skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang_杨, Lin 琳"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We design an uncertainty-aware cost-sensitive neural network (UA-CSNet) to estimate metallicities from dereddened and corrected Gaia BP/RP (XP) spectra for giant stars. This method accounts for both stochastic errors in the input spectra and the imbalanced density distribution in [Fe/H] values. With a specialized architecture and training strategy, the UA-CSNet improves the precision of the predicted metallicities, especially for very metal-poor (VMP; [Fe/H] ≤ −2.0) stars. With the PASTEL catalog as the training sample, our model can estimate metallicities down to [Fe/H] ∼ −4. We compare our estimates with a number of external catalogs and conduct tests using star clusters, finding overall good agreement. We also confirm that our estimates for VMP stars are unaffected by carbon enhancement. Applying the UA-CSNet, we obtain reliable and precise metallicity estimates for approximately 20 million giant stars, including 360,000 VMP stars and 50,000 extremely metal-poor ([Fe/H] ≤ −3.0) stars. The resulting catalog is publicly available via the Chinese Virtual Observatory at doi: 10.12149/101604. This work highlights the potential of low-resolution spectra for metallicity estimation and provides a valuable data set for studying the formation and chemodynamical evolution of our Galaxy. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026