skip to main content


Search for: All records

Creators/Authors contains: "Yanoviak, Stephen P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Temperature is a key abiotic condition that limits the distributions of organisms, and forest insects are particularly sensitive to thermal extremes. Whereas winged adult insects generally are able to escape unfavorable temperatures, other less-vagile insects (e.g., larvae) must withstand local microclimatic conditions to survive. Here, we measured the thermal tolerance of the larvae of three saproxylic beetle species that are common inhabitants of coarse woody debris (CWD) in temperate forests of eastern North America: Lucanus elaphus Fabricius (Lucanidae), Dendroides canadensis Latreille (Pyrochroidae), and Odontotaenius disjunctus Illiger (Passalidae). We determined how their critical thermal maxima (CTmax) vary with body size (mass), and measured the thermal profiles of CWD representing the range of microhabitats occupied by these species. Average CTmax differed among the three species and increased with mass intraspecifically. However, mass was not a good predictor of thermal tolerance among species. Temperature ramp rate and time in captivity also influenced larval CTmax, but only for D. canadensis and L. elaphus respectively. Heating profiles within relatively dry CWD sometimes exceeded the CTmax of the beetle larvae, and deeper portions of CWD were generally cooler. Interspecific differences in CTmax were not fully explained by microhabitat association, but the results suggest that the distribution of some species within a forest can be affected by local thermal extremes. Understanding the responses of saproxylic beetle larvae to warming habitats will help predict shifts in community structure and ecosystem functioning in light of climate change and increasing habitat fragmentation.

     
    more » « less
  2. Abstract Temperature extremes often limit animal distributions. Whereas some poikilotherms (e.g., winged insects) can escape local thermal extremes, many less vagile organisms (e.g., insect larvae and arthropods with limited dispersal ability) are at the mercy of local microenvironmental conditions. Here, we quantified the thermal tolerance of an abundant, endemic, Nearctic millipede (Euryurus leachii), and explored the effects of seasonality, mass, and sex on its critical thermal maxima (CTmax). We also measured the thermal microenvironments of dead wood representing different decay classes. Overall, the mean CTmax for this species was ca. 40.5°C. Mass and sex had no effect on millipede CTmax. However, the mean CTmax for millipedes collected in the fall was 0.6°C higher than for individuals collected in the spring. An exposed dry log representing one common microhabitat for E. leachii readily warmed to temperatures exceeding its CTmax. The results suggest that CTmax is a seasonally plastic trait in E. leachii and that microclimatic conditions potentially limit the local distribution of this species. With habitat fragmentation and climate change contributing to warmer temperatures in forested systems, understanding the responses of detritivores like E. leachii can help predict potential shifts in community composition and ecosystem processes. 
    more » « less
  3. Abstract

    Tropical forests experience a relatively stable climate, but are not thermally uniform. The tropical forest canopy is hotter and thermally more variable than the understory. Heat stress in the canopy is expected to increase with global warming, potentially threatening its inhabitants. Here, we assess the impact of heating on the most abundant tropical canopy arthropods—ants. While foragers can escape hot branches, brood and workers inside twig nests might be unable to avoid heat stress. We examined nest choice and absconding behavior—nest evacuation in response to heat stress—of four common twig-nesting ant genera. We found that genera nesting almost exclusively in the canopy occupy smaller cavities compared toCamponotusandCrematogasterthat nest across all forest strata.Crematogasterants absconded at the lowest temperatures in heating experiments with both natural and artificial nests.Cephalotes workers were overall less likely to abscond from their nests. This is the first test of behavioral thermoregulation in tropical forest canopy ants, and it highlights different strategies and sensitivities to heat stress. Behavioral avoidance is the first line of defense against heat stress and will be crucial for small ectotherms facing increasing regional and local temperatures.

     
    more » « less
  4. Summary

    Lightning is an important agent of plant mortality and disturbance in forests. Lightning‐caused disturbance is highly variable in terms of its area of effect and disturbance severity (i.e. tree damage and death), but we do not know how this variation is influenced by forest structure and plant composition.

    We used a novel lightning detection system to quantify how lianas influenced the severity and spatial extent (i.e. area) of lightning disturbance using 78 lightning strikes in central Panama.

    The local density of lianas (measured as liana basal area) was positively associated with the number of trees killed and damaged by lightning, and patterns of plant damage indicated that this occurred because lianas facilitated more electrical connections from large to small trees. Liana presence, however, did not increase the area of the disturbance. Thus, lianas increased the severity of lightning disturbance by facilitating damage to additional trees without influencing the footprint of the disturbance.

    These findings indicate that lianas spread electricity to damage and kill understory trees that otherwise would survive a strike. As liana abundance increases in tropical forests, their negative effects on tree survival with respect to the severity of lightning‐related tree damage and death are likely to increase.

     
    more » « less
  5. null (Ed.)
    Synopsis Arboreal ants must navigate variably sized and inclined linear structures across a range of substrate roughness when foraging tens of meters above the ground. To achieve this, arboreal ants use specialized adhesive pads and claws to maintain effective attachment to canopy substrates. Here, we explored the effect of substrate structure, including small and large-scale substrate roughness, substrate diameter, and substrate orientation (inclination), on adhesion and running speed of workers of one common, intermediately-sized, arboreal ant species. Normal (orthogonal) and shear (parallel) adhesive performance varied on sandpaper and natural leaf substrates, particularly at small size scales, but running speed on these substrates remained relatively constant. Running speed also varied minimally when running up and down inclined substrates, except when the substrate was positioned completely vertical. On vertical surfaces, ants ran significantly faster down than up. Ant running speed was slower on relatively narrow substrates. The results of this study show that variation in the physical properties of tree surfaces differentially affects arboreal ant adhesive and locomotor performance. Specifically, locomotor performance was much more robust to surface roughness than was adhesive performance. The results provide a basis for understanding how performance correlates of functional morphology contribute to determining local ant distributions and foraging decisions in the tropical rainforest canopy. 
    more » « less
  6. Dyer, Lee (Ed.)
    Abstract Lightning is a common agent of disturbance in many forest ecosystems. Lightning-damaged trees are a potentially important resource for beetles, but most evidence for this association is limited to temperate pine forests. Here, we evaluated the relationship between lightning damage and beetle colonization of tropical trees. We recorded the number of beetle holes on the trunks of trees from 10 strike sites (n = 173 lightning-damaged trees) and 10 matching control sites (n = 137 control trees) in Panama. The trunks of lightning-struck trees had 370% more beetle holes than control trees. The abundance of beetle holes increased with increasing total crown dieback among both control and lightning-damaged trees, and with larger tree diameter among lightning-struck trees. Beetle holes also were more abundant in trunk sections of lightning-damaged trees located directly below a damaged section of the crown. The results of this study suggest that lightning damage facilitates beetle colonization in tropical forest trees and provide a basis for investigations of the effects of lightning-caused disturbance on beetle population dynamics and assemblage structure. 
    more » « less
  7. Abstract

    We surveyed seven lightning strike sites in the northern Peruvian Amazon. An average of 17.3 trees were damaged per strike; large trees (> 60 cm diameter) were disproportionately affected. The results contribute to a growing body of evidence that lightning is an important agent of disturbance pantropically.

    Abstract in Spanish is available with online material.

     
    more » « less
  8. Abstract

    Lightning is a common source of disturbance, but its ecological effects in tropical forests are largely undescribed. Here we quantify the contributions of lightning strikes to forest turnover and plant mortality in a lowland Panamanian forest using a real‐time lightning monitoring system. We examined 2,195 lightning‐damaged trees distributed among 93 different strikes. None exhibited scars or fires. On average, each strike disturbed 451 m2(95% CI: 365–545 m2), created a canopy gap of 304 m2(95% CI 198–454 m2), and caused 7.36 Mg of woody biomass turnover (CI: 5.36–9.65 Mg). Cumulatively, we estimate that lightning strikes in this forest create canopy gaps equaling 0.39% of forest canopy area, representing 20.1% of annual gap area formation, and are responsible for 16.1% of total woody biomass turnover. Trees, lianas, herbaceous climbers and epiphytes were killed by lightning at rates 8–29 times greater than their baseline mortality rates in undamaged control sites. The likelihood of lightning‐caused death was higher for trees, lianas, and herbaceous climbers than for epiphytes, and high liana mortality suggests that lightning is an important driver of liana turnover. These results indicate that lightning influences gap dynamics, plant community composition and carbon storage capacity in some tropical forests.

     
    more » « less