skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yao, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Optical‐resolution photoacoustic microscopy (OR‐PAM) has been increasingly utilized for in vivo imaging of biological tissues, offering structural, functional, and molecular information. In OR‐PAM, it is often necessary to make a trade‐off between imaging depth, lateral resolution, field of view, and imaging speed. To improve the lateral resolution without sacrificing other performance metrics, we developed a virtual‐point‐based deconvolution algorithm for OR‐PAM (VP‐PAM). VP‐PAM has achieved a resolution improvement ranging from 43% to 62.5% on a single‐line target. In addition, it has outperformed Richardson‐Lucy deconvolution with 15 iterations in both structural similarity index and peak signal‐to‐noise ratio on an OR‐PAM image of mouse brain vasculature. When applied to an in vivo glass frog image obtained by a deep‐penetrating OR‐PAM system with compromised lateral resolution, VP‐PAM yielded enhanced resolution and contrast with better‐resolved microvessels. 
    more » « less
  2. This paper proposes a semi-analytical approach for efficient and accurate electromagnetic transient (EMT) simulation of a power grid. The approach first derives a high-order semi-analytical solution (SAS) of the grid’s state-space EMT model using the differential transformation (DT), and then evaluates the solution over enlarged, variable time steps to significantly accelerate the simulations while maintaining its high accuracy on detailed fast EMT dynamics. The approach also addresses switches during large time steps by using a limit violation detection algorithm with a binary search-enhanced quadratic interpolation. Case studies are conducted on EMT models of the IEEE 39-bus system and large-scale systems to demonstrate the merits of the new simulation approach against traditional numerical methods. 
    more » « less
  3. We study the D-optimal Data Fusion (DDF) problem, which aims to select new data points, given an existing Fisher information matrix, so as to maximize the logarithm of the determinant of the overall Fisher information matrix. We show that the DDF problem is NP-hard and has no constant-factor polynomial-time approximation algorithm unless P = NP. Therefore, to solve the DDF problem effectively, we propose two convex integer-programming formulations and investigate their corresponding complementary and Lagrangian-dual problems. Leveraging the concavity of the objective functions in the two proposed convex integer-programming formulations, we design an exact algorithm, aimed at solving the DDF problem to optimality. We further derive a family of submodular valid inequalities and optimality cuts, which can significantly enhance the algorithm performance. We also develop scalable randomized-sampling and local-search algorithms with provable performance guarantees. Finally, we test our algorithms using real-world data on the new phasor-measurement-units placement problem for modern power grids, considering the existing conventional sensors. Our numerical study demonstrates the efficiency of our exact algorithm and the scalability and high-quality outputs of our approximation algorithms. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: Y. Li and W. Xie were supported in part by Division of Civil, Mechanical and Manufacturing Innovation [Grant 2046414] and Division of Computing and Communication Foundations [Grant 2246417]. J. Lee was supported in part by Air Force Office of Scientific Research [Grants FA9550-19-1-0175 and FA9550-22-1-0172]. M. Fampa was supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 305444/2019-0 and 434683/2018-3]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2022.0235 . 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal, seasonal, and inter-annual) variations of SUHI are contributed by a variety of factors such as impervious surface area, vegetation cover, landscape structure, albedo, and climate. However, applications of SUHI research are largely impeded by a series of data and methodological limitations. Lastly, we propose key potential directions and opportunities for future efforts. Besides improving the quality and quantity of LST data, more attention should be focused on understudied regions/cities, methods to examine SUHI intensity, inter-annual variability and long-term trends of SUHI, scaling issues of SUHI, the relationship between surface and subsurface UHIs, and the integration of remote sensing with field observations and numeric modeling. 
    more » « less