skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Virtual‐point‐based deconvolution for optical‐resolution photoacoustic microscopy
Abstract Optical‐resolution photoacoustic microscopy (OR‐PAM) has been increasingly utilized for in vivo imaging of biological tissues, offering structural, functional, and molecular information. In OR‐PAM, it is often necessary to make a trade‐off between imaging depth, lateral resolution, field of view, and imaging speed. To improve the lateral resolution without sacrificing other performance metrics, we developed a virtual‐point‐based deconvolution algorithm for OR‐PAM (VP‐PAM). VP‐PAM has achieved a resolution improvement ranging from 43% to 62.5% on a single‐line target. In addition, it has outperformed Richardson‐Lucy deconvolution with 15 iterations in both structural similarity index and peak signal‐to‐noise ratio on an OR‐PAM image of mouse brain vasculature. When applied to an in vivo glass frog image obtained by a deep‐penetrating OR‐PAM system with compromised lateral resolution, VP‐PAM yielded enhanced resolution and contrast with better‐resolved microvessels.  more » « less
Award ID(s):
2144788
PAR ID:
10576335
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley-VCH GmbH
Date Published:
Journal Name:
Journal of Biophotonics
Volume:
17
Issue:
8
ISSN:
1864-063X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Since its first demonstration over 100 years ago, scattering‐based light‐sheet microscopy has recently re‐emerged as a key modality in label‐free tissue imaging and cellular morphometry; however, scattering‐based light‐sheet imaging with subcellular resolution remains an unmet target. This is because related approaches inevitably superimpose speckle or granular intensity modulation on to the native subcellular features. Here, we addressed this challenge by deploying a time‐averaged pseudo‐thermalized light‐sheet illumination. While this approach increased the lateral dimensions of the illumination sheet, we achieved subcellular resolving power after image deconvolution. We validated this approach by imaging cytosolic carbon depots in yeast and bacteria with increased specificity, no staining, and ultralow irradiance levels. Overall, we expect this scattering‐based light‐sheet microscopy approach will advance single, live cell imaging by conferring low‐irradiance and label‐free operation towards eradicating phototoxicity. 
    more » « less
  2. Intraoperative imaging of slide-free specimens is crucial for oncology surgeries, allowing surgeons to quickly identify tumor margins for precise surgical guidance. While high-resolution ultraviolet photoacoustic microscopy has been demonstrated for slide-free histology, the imaging speed is insufficient, due to the low laser repetition rate and the limited depth of field. To address these challenges, we present parallel ultraviolet photoacoustic microscopy (PUV-PAM) with simultaneous scanning of eight optical foci to acquire histology-like images of slide-free fresh specimens, improving the ultraviolet PAM imaging speed limited by low laser repetition rates. The PUV-PAM has achieved an imaging speed of 0.4 square millimeters per second (i.e., 4.2 minutes per square centimeter) at 1.3-micrometer resolution using a 50-kilohertz laser. In addition, we demonstrated the PUV-PAM with eight needle-shaped beams for an extended depth of field, allowing fast imaging of slide-free tissues with irregular surfaces. We believe that the PUV-PAM approach will enable rapid intraoperative photoacoustic histology and provide prospects for ultrafast optical-resolution PAM. 
    more » « less
  3. Abstract Spectral imaging approaches provide new possibilities for measuring and discriminating fluorescent molecules in living cells and tissues. These approaches often employ tunable filters and robust image processing algorithms to identify many fluorescent labels in a single image set. Here, we present results from a novel spectral imaging technology that scans the fluorescence excitation spectrum, demonstrating that excitation‐scanning hyperspectral image data can discriminate among tissue types and estimate the molecular composition of tissues. This approach allows fast, accurate quantification of many fluorescent species from multivariate image data without the need of exogenous labels or dyes. We evaluated the ability of the excitation‐scanning approach to identify endogenous fluorescence signatures in multiple unlabeled tissue types. Signatures were screened using multi‐pass principal component analysis. Endmember extraction techniques revealed conserved autofluorescent signatures across multiple tissue types. We further examined the ability to detect known molecular signatures by constructing spectral libraries of common endogenous fluorophores and applying multiple spectral analysis techniques on test images from lung, liver and kidney. Spectral deconvolution revealed structure‐specific morphologic contrast generated from pure molecule signatures. These results demonstrate that excitation‐scanning spectral imaging, coupled with spectral imaging processing techniques, provides an approach for discriminating among tissue types and assessing the molecular composition of tissues. Additionally, excitation scanning offers the ability to rapidly screen molecular markers across a range of tissues without using fluorescent labels. This approach lays the groundwork for translation of excitation‐scanning technologies to clinical imaging platforms. 
    more » « less
  4. The human sense of smell plays an important role in appetite and food intake, detecting environmental threats, social interactions, and memory processing. However, little is known about the neural circuity supporting its function. The olfactory tracts project from the olfactory bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize image distortions and characterize the human olfactory tracts in vivo . We collected high-resolution dMRI data from 25 healthy human participants (12 male and 13 female) and performed probabilistic tractography using constrained spherical deconvolution (CSD). At the individual subject level, we identified the lateral, medial, and intermediate striae with their respective cortical connections to the piriform cortex and amygdala (AMY), olfactory tubercle (OT), and anterior olfactory nucleus (AON). We combined individual results across subjects to create a normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship between olfactory perceptual scores and measures of white matter integrity, including mean diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor discrimination performance. In summary, our results provide a detailed characterization of the connectivity of the human olfactory tracts and demonstrate an association between their structural integrity and olfactory perceptual function. SIGNIFICANCE STATEMENT This study provides the first detailed in vivo description of the cortical connectivity of the three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging (dMRI). Additionally, we show that tract microstructure correlates with performance on an odor discrimination task, suggesting a link between the structural integrity of the olfactory tracts and odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that may be used in future research to study its integrity in health and disease. 
    more » « less
  5. Endoscopy, enabling high-resolution imaging of deep tissues and internal organs, plays an important role in basic research and clinical practice. Recent advances in photoacoustic microscopy (PAM), demonstrating excellent capabilities in high-resolution functional imaging, have sparked significant interest in its integration into the field of endoscopy. However, there are challenges in achieving functional PAM in the endoscopic setting. This Perspective article discusses current progress in the development of endoscopic PAM and the challenges related to functional measurements. Then, it points out potential directions to advance endoscopic PAM for functional imaging by leveraging fiber optics, microfabrication, optical engineering, and computational approaches. Finally, it highlights emerging opportunities for functional endoscopic PAM in basic and translational biomedicine. 
    more » « less