Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Transition metal dichalcogenide (TMD) twisted homobilayers have been established as an ideal platform for studying strong correlation phenomena, as exemplified by the recent discovery of fractional Chern insulator (FCI) states in twisted MoTe21–4 and Chern insulators (CI)5 and unconventional superconductivity6,7 in twisted WSe2. In these systems, nontrivial topology in the strongly layer-hybridized regime can arise from a spatial patterning of interlayer tunneling amplitudes and layer-dependent potentials that yields a lattice of layer skyrmions. Here we report the direct observation of skyrmion textures in the layer degree of freedom of Rhombohedralstacked (R-stacked) twisted WSe2 homobilayers. This observation is based on scanning tunneling spectroscopy that separately resolves the G-valley and K-valley moiré electronic states. We show that G-valley states are subjected to a moiré potential with an amplitude of ~ 120 meV. At ~150 meV above the G-valley, the K-valley states are subjected to a weaker moiré potential of ~30 meV. Most significantly, we reveal opposite layer polarization of the K-valley at the MX and XM sites within the moiré unit cell, confirming the theoretically predicted skyrmion layer-texture. The dI/dV mappings allow the parameters that enter the continuum model for the description of moiré bands in twisted TMD bilayers to be determined experimentally, further establishing a direct correlation between the shape of LDOS profile in real space and topology of topmost moiré band.more » « less
-
Context. The equatorial accretion scenario, caused by the development of the Rayleigh-Taylor (RT) instability at the disk edge, was suggested by accurate three-dimensional magnetohydrodynamic (MHD) modelling, but no observational or experimental confirmation of such phenomena has been evidenced yet. Aims. We studied the propagation of a laterally extended laser-generated plasma stream across a magnetic field and investigated if this kind of structure can be scaled to the case of equatorial ‘tongue’ accretion channels in young stellar objects (YSOs); if so, this would support the possibility of equatorial accretion in young accreting stars. Methods. We conducted a scaled laboratory experiment at the PEARL laser facility. The experiment consists in an optical laser pulse that is focused onto the surface of a Teflon target. The irradiation of the target leads to the expansion of a hot plasma stream into the vacuum, perpendicularly to an externally applied magnetic field. We used a Mach-Zehnder interferometer to diagnose the plasma stream propagation along two axes, to obtain the three-dimensional distribution of the plasma stream. Results. The laboratory experiment shows the propagation of a laterally extended laser-generated plasma stream across a magnetic field. We demonstrate that: (i) such a stream is subject to the development of the RT instability, and (ii) the stream, decomposed into tongues, is able to efficiently propagate perpendicular to the magnetic field. Based on numerical simulations, we show that the origin of the development of the instability in the laboratory is similar to that observed in MHD models of equatorial tongue accretion in YSOs. Conclusions. As we verify that the laboratory plasma scales favourably to accretion inflows of YSOs, our laboratory results support the argument in favour of the possibility of the RT-instability-caused equatorial tongue accretion scenario in the astrophysical case.more » « less
-
null (Ed.)Simultaneous human activities, such as the Super Bowl game, would cause certain impacts on frequency fluctuations in power systems. With the help of FNET/GridEye measurements, this paper aims to give comprehensive analyses on the frequency fluctuations during Super Bowl LIV held on Feb. 2, 2020, so as to better understand several phenomena caused by simultaneous activities which will help system operations and controls. First, recent developments of the FNET/GridEye are briefly introduced. Second, the frequency fluctuations of the Eastern Interconnection (EI), western electricity coordinating council (WECC), and electric reliability council of Texas (ERCOT) power systems during Super Bowl LIV are analyzed. Third, frequency fluctuations of Super Bowl Sunday and ordinary Sundays in 2020 are compared. Finally, the differences of frequency fluctuations among different years during the Super Bowl and their change trends are also given. Furthermore, several possible explanations, including the simultaneity of electricity consumption at the beginning of commercial breaks and the halftime show, the increasing usage of the Internet, and the increasing size of TV screens, are illustrated in detail in this paper.more » « less
-
Abstract Observations of a regular pulse burst (RPB) at the end of a K‐event are analyzed utilizing a simple geometric model and particle swarm optimization (PSO) to estimate the currents and propagation speeds of successive pulses of the RPB. The results show that the current of successive pulses is strongly overlapped and, for typical speeds of continuously propagating K‐events, are unphysically large (88 kA), exceeding the currents of most strokes to ground. By default, the unphysical nature of the result, coupled with very high frequency interferometer observations of an RPB in Florida, shows that the propagation speed of the pulses is significantly faster than expected, namely ∼0.6–1.8 × 108 m/s. This reduces the inferred current from 88 kA down to 6–18 kA, typical of intracloud events. The fast propagation speed of the stepping is explained by successive pulses retracing much of the path of the preceding pulses due to the successive pulses being strongly overlapped.more » « less
-
Free, publicly-accessible full text available September 1, 2026
-
This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetimemore » « lessFree, publicly-accessible full text available July 1, 2026
-
This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible.more » « lessFree, publicly-accessible full text available April 22, 2026
-
Top-quark pair production is observed in lead–lead ( ) collisions at at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERNmore » « lessFree, publicly-accessible full text available April 1, 2026
-
A<sc>bstract</sc> A study of the Higgs boson decaying into bottom quarks (H→$$ b\overline{b} $$ ) and charm quarks (H→$$ c\overline{c} $$ ) is performed, in the associated production channel of the Higgs boson with aWorZboson, using 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ = 13 TeV collected by the ATLAS detector. The individual production ofWHandZHwithH→$$ b\overline{b} $$ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for theH→$$ c\overline{c} $$ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in|κc| <4.2 at 95% confidence level. Combining theH→$$ b\overline{b} $$ andH→$$ c\overline{c} $$ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κc/κb|) to be less than 3.6 at 95% confidence level.more » « lessFree, publicly-accessible full text available April 1, 2026
-
The ATLAS experiment has developed extensive software and distributed computing systems for Run 3 of the LHC. These systems are described in detail, including software infrastructure and workflows, distributed data and workload management, database infrastructure, and validation. The use of these systems to prepare the data for physics analysis and assess its quality are described, along with the software tools used for data analysis itself. An outlook for the development of these projects towards Run 4 is also provided.more » « lessFree, publicly-accessible full text available March 6, 2026
An official website of the United States government

Full Text Available