Those who rely on electricity-dependent durable medical equipment (DME) often struggle to use their medical devices during prolonged power outages. With the increasing frequency of natural disasters and the growing use of electricity-dependent home medical devices, in addition to the continued integration of home-level renewable energy and mobile storage systems such as electric vehicles with vehicle-to-home (V2H) capabilities, home energy management systems (HEMS) must prioritize life-essential medical loads during extended power outages. This work integrates electricity-dependent DME into home energy management optimization. An oxygen concentrator and a hemodialysis machine are used as examples of medical devices with high power demands and distinct usage patterns. The HEMS model is formulated as a mixed-integer linear program (MILP) to minimize the total weighted load curtailment and thermal discomfort during extended outage scenarios. The results demonstrate that the HEMS is effective in sustaining DME operation.
more »
« less
Impact of simultaneous activities on frequency fluctuations — comprehensive analyses based on the real measurement data from FNET/GridEye
Simultaneous human activities, such as the Super Bowl game, would cause certain impacts on frequency fluctuations in power systems. With the help of FNET/GridEye measurements, this paper aims to give comprehensive analyses on the frequency fluctuations during Super Bowl LIV held on Feb. 2, 2020, so as to better understand several phenomena caused by simultaneous activities which will help system operations and controls. First, recent developments of the FNET/GridEye are briefly introduced. Second, the frequency fluctuations of the Eastern Interconnection (EI), western electricity coordinating council (WECC), and electric reliability council of Texas (ERCOT) power systems during Super Bowl LIV are analyzed. Third, frequency fluctuations of Super Bowl Sunday and ordinary Sundays in 2020 are compared. Finally, the differences of frequency fluctuations among different years during the Super Bowl and their change trends are also given. Furthermore, several possible explanations, including the simultaneity of electricity consumption at the beginning of commercial breaks and the halftime show, the increasing usage of the Internet, and the increasing size of TV screens, are illustrated in detail in this paper.
more »
« less
- Award ID(s):
- 1931975
- PAR ID:
- 10234030
- Date Published:
- Journal Name:
- CSEE journal of power and energy systems
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2096-0042
- Page Range / eLocation ID:
- 421-431
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study focuses on the Electric Reliability Council of Texas (ERCOT) electricity market in Texas and demonstrates how the increase in temperature due to climate change is already driving large increases in electricity demand and total electricity costs. Results show that, compared to a 1950–80 baseline climate, electricity demand in 2023 was 1.9 GW (3.9%) higher because of the extreme temperatures of that year—climate change contributed 47% of this increase, with the rest coming from short-term climate variability. As demand increases, so does the price per unit of electricity, so consumers are hit double: They must buy more electricity, and each unit of electricity costs more. Using data from the wholesale market, we estimate that the total cost of electricity (the combination of higher demand and higher per unit prices) increased by $7.6B in 2023 compared to the baseline climate, $290 per ERCOT customer, with most of this increase occurring during the summer. Climate change contributed about 29% of this ($2.2B, $83 per customer), while short-term variability contributed the rest. About two-thirds of this increase is due to price increases triggered when the ERCOT grid becomes constrained. Investments in increasing the power supply or the ability to transmit it across the state, or reducing demand (e.g., demand response), could substantially reduce the impact of increasing temperature on the cost of electricity in Texas. Significance StatementQuantifying the impacts of warmer temperatures due to climate change on society is a key goal of the climate science community. In this paper, we develop a methodology for calculating the cost of increased temperatures on electricity consumption. We show that climate change is driving up the costs of electricity in Texas. Compared to the climate of the mid-twentieth century, electricity demand was 4.1% higher in 2023, with climate change responsible for about half of this increase. This increased the total cost of electricity by $7.6 billion, $290 per person. Climate change contributed about 29% of this extra cost, representing a significant burden on the poorest in our society.more » « less
-
Not AvailableEnergy models for power systems require ongoing updates to reflect advancements in equipment technology and the increasing complexity of power electronic devices. This study utilizes a Power Hardware-in-the-Loop (PHIL) experimental setup to validate custom photovoltaic (PV) inverter models, aiming to enhance and expedite the development of advanced renewable energy models. The research compares the performance of a physical inverter with generic Renewable Energy Source (RES) models recommended by the Western Electricity Coordinating Council (WECC). As inverter-based renewable energy sources become more prevalent in modern electrical grids, it is crucial that dynamic models accurately represent their real-world behavior. Accurate models improve our understanding of these energy resources and their interactions with the grid. The proposed model enhancements are designed to better reflect real inverter performance, based on insights from PHIL experiments. These models are developed using the open source Modelica language and the OpenIPSL Modelica Library, allowing integration across various simulation tools without re-implementation. The paper concludes with a thorough assessment, comparing the enhanced models with PHIL experiments on a real PV inverter in a controlled laboratory setting. The study provides the enhanced WECC RES models and validation data as open source resources, facilitating further research and development.more » « less
-
Abstract Several recent widespread temperature extremes across the United States (U.S.) have been associated with power outages, disrupting access to electricity at times that are critical for the health and well-being of communities. Building resilience to such extremes in our energy infrastructure needs a comprehensive understanding of their spatial and temporal characteristics. In this study, we systematically quantify the frequency, extent, duration, and intensity of widespread temperature extremes and their associated energy demand in the six North American Electric Reliability Corporation regions using ERA5 reanalysis data. We show that every region has experienced hot or cold extremes that affected nearly their entire extent and such events were associated with substantially higher energy demand, resulting in simultaneous stress across the entire electric gird. The western U.S. experienced significant increases in the frequency (123%), extent (32%), duration (55%) and intensity (29%) of hot extremes and Texas experienced significant increases in the frequency (132%) of hot extremes. The frequency of cold extremes has decreased across most regions without substantial changes in other characteristics. Using power outage data, we show that recent widespread extremes in nearly every region have coincided with power outages, and such outages account for between 12%–52% of all weather-related outages in the past decade depending on the region. Importantly, we find that solar potential is significantly higher during widespread hot extremes in all six regions and during widespread cold extremes in five of the six regions. Further, wind potential is significantly higher during widespread hot or cold extremes in at least three regions. Our findings indicate that increased solar and wind capacity could be leveraged to meet the higher demand for energy during such widespread extremes, improving the resilience and reliability of our energy systems in addition to limiting carbon emissions.more » « less
-
null (Ed.)Abstract Objectives: To determine if solar-powered battery systems could be successfully used for electricity-dependent medical devices by families during a power outage. Methods: We assessed the use of and satisfaction with solar-powered battery systems distributed to 15 families following Hurricane Maria in rural Puerto Rico. Interviews were conducted in July 2018, 3 mo following distribution of the systems. Results: The solar-powered battery systems powered refrigeration for medications and prescribed diets, asthma therapy, inflatable mattresses to prevent bedsores, and continuous positive airway pressure machines for sleep apnea. Despite some system problems, such as inadequate power, defective cables, and blown fuses, families successfully dealt with these issues with some outside help. Almost all families were pleased with the systems and a majority would recommend solar-powered battery systems to a neighbor. Conclusions: Families accepted and successfully used solar-powered battery systems to power medical devices. Solar-powered battery systems should be considered as alternatives to generators for power outages after hurricanes and other disasters. Additional research and analysis are needed to inform policy on increasing access to such systems.more » « less
An official website of the United States government

