skip to main content

Search for: All records

Creators/Authors contains: "Ye, Xingchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Crystallization is a universal phenomenon underpinning many industrial and natural processes and is fundamental to chemistry and materials science. However, microscopic crystallization pathways of nanoparticle superlattices have been seldom studied mainly owing to the difficulty of real-time observation of individual self-assembling nanoparticles in solution. Here, using in situ electron microscopy, we directly image the full self-assembly pathway from dispersed nanoparticles into ordered superlattices in nonaqueous solution. We show that electron-beam irradiation controls nanoparticle mobility, and the solvent composition largely dictates interparticle interactions and assembly behaviors. We uncover a multistep crystallization pathway consisting of four distinct stages through multi-order-parameter analysis and visualize the formation, migration, and annihilation of multiple types of defects in nanoparticle superlattices. These findings open the door for achieving independent control over imaging conditions and nanoparticle assembly conditions and will enable further study of the microscopic kinetics of assembly and phase transition in nanocolloidal systems.
    Free, publicly-accessible full text available August 5, 2023
  2. Free, publicly-accessible full text available August 3, 2023
  3. Free, publicly-accessible full text available February 22, 2023
  4. Single entity electrochemical (SEE) studies that can probe activities and heterogeneity in activities at nanoscale require samples that contain single and isolated particles. Single, isolated nanoparticles are achieved here with electrospray deposition of colloidal nanoparticle solutions, with simple instrumentation. Role of three electrospray (ES) parameters, viz. spray distance (emitter tip-to-substrate distance), ES current and emitter tip diameter, in the ES deposition of single Au nano-octahedra (Au ODs) is examined. The ES deposition of single, isolated Au ODs are analyzed in terms of percentage of single NPs and local surface density of deposition. The local surface density of ES deposition of single Au ODs was found to increase with decrease in spray distance and emitter tip diameter, and increase in ES current. While the percentage of single particle ES deposition increased with increase in spray distance and decrease in emitter tip size. No significant change in the single Au ODs ES deposition percentage was observed with change in ES current values included in this study. The most favourable conditions in the ES deposition of Au ODs in this study resulted in the local surface density of 0.26 ± 0.05 single particles per μm 2 and observation of 96.3% single Au ODmore »deposition.« less