Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Endohedral metallofullerenes (EMFs) are excellent carriers of rare‐earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water‐soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three‐buckyball system, as a modular platform to develop structurally defined water‐soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water‐soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior
T 1relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio‐specific REE drugs. -
Abstract Endohedral metallofullerenes (EMFs) are excellent carriers of rare‐earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water‐soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three‐buckyball system, as a modular platform to develop structurally defined water‐soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water‐soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior
T 1relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio‐specific REE drugs.