Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Spoke-type PMSMs were designed with commercial permanent magnets and theoretically designed hexaferrite: Nd-Fe-B (NdFe35, G1NH), Alnico (8B, 8H, 9), and La-CoSrM hexaferrite (NMF-15G). It was found that coercivity (Hc) plays a crucial role in determining motor performance. The ANSYS Maxwell software was used to characterize the designed motor performance. Commercial RE-free Alnico 9 holds a 10.5 MGOe of (BH)max, much higher than a 5.5 MGOe of RE-free Alnico 8B/8H and SrM (SrFe12O19) hexaferrite magnets. However, the Alnico 9 motor performance is not better than the other Alnico 8B/8H and hexaferrite motors. The spoke-type PMSM with our theoretically designed SrM hexaferrite simulated motor performance. A motor performs best when the Hc/Br ratio equals one with a high Hc. For instance, the motor torque and peak power increase to 189 Nm and 178 kW, respectively, as the Hc increases to 4.86 kOe from 2.43 kOe. However, the motor performance is not significantly changed with a fixed Hc and various Br. It was found that regardless of (BH)max, coercivity (Hc) plays a dominant role in motor performance.more » « less
-
First-principles calculations were performed to calculate the electronic structures of low temperature phase (LTP) MnBi (Mn50Bi50) and substitutionally and interstitially Sn-doped MnBi [Mn50Bi25Sn25, (Mn0.5Bi0.5)66.7Sn33.3]. Brillouin function predicts the temperature dependence of saturation magnetization M(T). Sn substitution for Bi in MnBi (Mn50Bi25Sn25) changes the magnetocrystalline anisotropy constant (Ku) from −0.202 MJ/m3 (the in-plane magnetization) for LTP MnBi to 1.711 MJ/m3 (the out-of-plane magnetization). In comparison, the Ku remains negative but slightly decreases to −0.043 MJ/m3 when Sn is interstitially doped in MnBi [(Mn0.5Bi0.5)66.7Sn33.3]. The Curie temperature (TC) decreases from 716 K for LTP Mn50Bi50 to 445 K for Mn50Bi25Sn25 and 285 K for (Mn0.5Bi0.5)66.7Sn33.3. Mn50Bi25Sn25 has a lower magnetic moment of 5.034 μB/f.u. but a higher saturation magnetization of 64.2 emu/g than (Mn0.5Bi0.5)66.7Sn33.3 with a magnetic moment of 6.609 μB/f.u. and a saturation magnetization of 48.2 emu/g because the weight and volume of the substitutionally Sn-doped MnBi are smaller than the interstitially Sn-doped MnBi. The low Curie temperature and magnetization for Sn-doped MnBi are attributed to the high concentration of Sn. Thus, future study needs to focus on low Sn-concentrated MnBi.more » « less
-
The friction and wear behavior of palladium (Pd)-rich amorphous alloy (Pd43Cu27Ni10P20) against 440C stainless steel under ionic liquids as lubricants, i.e., 1-nonyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([C9C1im][NTf2]), were investigated using a ball-on-disc reciprocating tribometer at ambient, 100 and 200 °C with different sliding speeds of 3 and 7 mm/s, whose results were compared to those from crystalline Pd samples. The measured coefficient of friction (COF) and wear were affected by both temperature and sliding speed. The COF of crystalline Pd samples dramatically increased when the temperature increased, whereas the COF of the amorphous Pd alloy samples remained low. As the sliding speed increased, the COF of both Pd samples showed decreasing trends. From the analysis of a 3D surface profilometer and scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) data, three types of wear (i.e., delamination, adhesive, and abrasive wear) were observed on the crystalline Pd surfaces, whereas the amorphous Pd alloy surfaces produced abrasive wear only. In addition, X-ray photoelectron spectroscopy (XPS) measurements were performed to study the formation of tribofilm. It was found that the chemical reactivity at the contacting interface increased with temperature and sliding contact speed. The ionic liquids (ILs) were effective as lubricants when the applied temperature and sliding speed were 200 °C and 7 mm/s, respectively.more » « less