Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With the emergence of more and more powerful chipsets and hardware and the rise of Artificial Intelligence of Things (AIoT), there is a growing trend for bringing Deep Neural Network (DNN) models to empower mobile and edge devices with intelligence such that they can support attractive AI applications on the edge in a real-time or near real-time manner. To leverage heterogeneous computational resources (such as CPU, GPU, DSP, etc) to effectively and efficiently support concurrent inference of multiple DNN models on a mobile or edge device, we propose a novel online Co-Scheduling framework based on deep REinforcement Learning (DRL), which we call COSREL. COSREL has the following desirable features: 1) it achieves significant speedup over commonly-used methods by efficiently utilizing all the computational resources on heterogeneous hardware; 2) it leverages emerging Deep Reinforcement Learning (DRL) to make dynamic and wise online scheduling decisions based on system runtime state; 3) it is capable of making a good tradeoff among inference latency, throughput and energy efficiency; and 4) it makes no changes to given DNN models, thus preserves their accuracies. To validate and evaluate COSREL, we conduct extensive experiments on an off-the-shelf Android smartphone with widely-used DNN models to compare it with three commonly-used baselines. Our experimental results show that 1) COSREL consistently and significantly outperforms all the baselines in terms of both throughput and latency; and 2) COSREL is generally superior to all the baselines in terms of energy efficiency.more » « less
-
In this paper, we present design, implementation and evaluation of a novel predictive control framework to enable reliable distributed stream data processing, which features a Deep Recurrent Neural Network (DRNN) model for performance prediction, and dynamic grouping for flexible control. Specifically, we present a novel DRNN model, which makes accurate performance prediction with careful consideration for interference of co-located worker processes, according to multilevel runtime statistics. Moreover, we design a new grouping method, dynamic grouping, which can distribute/re-distribute data tuples to downstream tasks according to any given split ratio on the fly. So it can be used to re-direct data tuples to bypass misbehaving workers. We implemented the proposed framework based on a widely used Distributed Stream Data Processing System (DSDPS), Storm. For validation and performance evaluation, we developed two representative stream data processing applications: Windowed URL Count and Continuous Queries. Extensive experimental results show: 1) The proposed DRNN model outperforms widely used baseline solutions, ARIMA and SVR, in terms of prediction accuracy; 2) dynamic grouping works as expected; and 3) the proposed framework enhances reliability by offering minor performance degradation with misbehaving workers.more » « less