skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yin, Chengxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the emergence of more and more powerful chipsets and hardware and the rise of Artificial Intelligence of Things (AIoT), there is a growing trend for bringing Deep Neural Network (DNN) models to empower mobile and edge devices with intelligence such that they can support attractive AI applications on the edge in a real-time or near real-time manner. To leverage heterogeneous computational resources (such as CPU, GPU, DSP, etc) to effectively and efficiently support concurrent inference of multiple DNN models on a mobile or edge device, we propose a novel online Co-Scheduling framework based on deep REinforcement Learning (DRL), which we call COSREL. COSREL has the following desirable features: 1) it achieves significant speedup over commonly-used methods by efficiently utilizing all the computational resources on heterogeneous hardware; 2) it leverages emerging Deep Reinforcement Learning (DRL) to make dynamic and wise online scheduling decisions based on system runtime state; 3) it is capable of making a good tradeoff among inference latency, throughput and energy efficiency; and 4) it makes no changes to given DNN models, thus preserves their accuracies. To validate and evaluate COSREL, we conduct extensive experiments on an off-the-shelf Android smartphone with widely-used DNN models to compare it with three commonly-used baselines. Our experimental results show that 1) COSREL consistently and significantly outperforms all the baselines in terms of both throughput and latency; and 2) COSREL is generally superior to all the baselines in terms of energy efficiency. 
    more » « less
  2. In this paper, we present design, implementation and evaluation of a novel predictive control framework to enable reliable distributed stream data processing, which features a Deep Recurrent Neural Network (DRNN) model for performance prediction, and dynamic grouping for flexible control. Specifically, we present a novel DRNN model, which makes accurate performance prediction with careful consideration for interference of co-located worker processes, according to multilevel runtime statistics. Moreover, we design a new grouping method, dynamic grouping, which can distribute/re-distribute data tuples to downstream tasks according to any given split ratio on the fly. So it can be used to re-direct data tuples to bypass misbehaving workers. We implemented the proposed framework based on a widely used Distributed Stream Data Processing System (DSDPS), Storm. For validation and performance evaluation, we developed two representative stream data processing applications: Windowed URL Count and Continuous Queries. Extensive experimental results show: 1) The proposed DRNN model outperforms widely used baseline solutions, ARIMA and SVR, in terms of prediction accuracy; 2) dynamic grouping works as expected; and 3) the proposed framework enhances reliability by offering minor performance degradation with misbehaving workers. 
    more » « less