skip to main content

Title: A Co-Scheduling Framework for DNN Models on Mobile and Edge Devices with Heterogeneous Hardware
With the emergence of more and more powerful chipsets and hardware and the rise of Artificial Intelligence of Things (AIoT), there is a growing trend for bringing Deep Neural Network (DNN) models to empower mobile and edge devices with intelligence such that they can support attractive AI applications on the edge in a real-time or near real-time manner. To leverage heterogeneous computational resources (such as CPU, GPU, DSP, etc) to effectively and efficiently support concurrent inference of multiple DNN models on a mobile or edge device, we propose a novel online Co-Scheduling framework based on deep REinforcement Learning (DRL), which we call COSREL. COSREL has the following desirable features: 1) it achieves significant speedup over commonly-used methods by efficiently utilizing all the computational resources on heterogeneous hardware; 2) it leverages emerging Deep Reinforcement Learning (DRL) to make dynamic and wise online scheduling decisions based on system runtime state; 3) it is capable of making a good tradeoff among inference latency, throughput and energy efficiency; and 4) it makes no changes to given DNN models, thus preserves their accuracies. To validate and evaluate COSREL, we conduct extensive experiments on an off-the-shelf Android smartphone with widely-used DNN models to compare it with more » three commonly-used baselines. Our experimental results show that 1) COSREL consistently and significantly outperforms all the baselines in terms of both throughput and latency; and 2) COSREL is generally superior to all the baselines in terms of energy efficiency. « less
Authors:
; ; ; ; ;
Award ID(s):
1704092
Publication Date:
NSF-PAR ID:
10303786
Journal Name:
IEEE Transactions on Mobile Computing
ISSN:
1536-1233
Sponsoring Org:
National Science Foundation
More Like this
  1. The ever increasing size of deep neural network (DNN) models once implied that they were only limited to cloud data centers for runtime inference. Nonetheless, the recent plethora of DNN model compression techniques have successfully overcome this limit, turning into a reality that DNN-based inference can be run on numerous resource-constrained edge devices including mobile phones, drones, robots, medical devices, wearables, Internet of Things devices, among many others. Naturally, edge devices are highly heterogeneous in terms of hardware specification and usage scenarios. On the other hand, compressed DNN models are so diverse that they exhibit different tradeoffs in a multi-dimension space, and not a single model can achieve optimality in terms of all important metrics such as accuracy, latency and energy consumption. Consequently, how to automatically select a compressed DNN model for an edge device to run inference with optimal quality of experience (QoE) arises as a new challenge. The state-of-the-art approaches either choose a common model for all/most devices, which is optimal for a small fraction of edge devices at best, or apply device-specific DNN model compression, which is not scalable. In this paper, by leveraging the predictive power of machine learning and keeping end users in the loop,more »we envision an automated device-level DNN model selection engine for QoE-optimal edge inference. To concretize our vision, we formulate the DNN model selection problem into a contextual multi-armed bandit framework, where features of edge devices and DNN models are contexts and pre-trained DNN models are arms selected online based on the history of actions and users' QoE feedback. We develop an efficient online learning algorithm to balance exploration and exploitation. Our preliminary simulation results validate our algorithm and highlight the potential of machine learning for automating DNN model selection to achieve QoE-optimal edge inference.« less
  2. Deep neural networks (DNNs) are increasingly used for real-time inference, requiring low latency, but require significant computational power as they continue to increase in complexity. Edge clouds promise to offer lower latency due to their proximity to end-users and having powerful accelerators like GPUs to provide the computation power needed for DNNs. But it is also important to ensure that the edge-cloud resources are utilized well. For this, multiplexing several DNN models through spatial sharing of the GPU can substantially improve edge-cloud resource usage. Typical GPU runtime environments have significant interactions with the CPU, to transfer data to the GPU, for CPU-GPU synchronization on inference task completions, etc. These result in overheads. We present a DNN inference framework with a set of software primitives that reduce the overhead for DNN inference, increase GPU utilization and improve performance, with lower latency and higher throughput. Our first primitive uses the GPU DMA effectively, reducing the CPU cycles spent to transfer the data to the GPU. A second primitive uses asynchronous ‘events’ for faster task completion notification. GPU runtimes typically preclude fine-grained user control on GPU resources, causing long GPU downtimes when adjusting resources. Our third primitive supports overlapping of model-loading and execution,more »thus allowing GPU resource re-allocation with very little GPU idle time. Our other primitives increase inference throughput by improving scheduling and processing more requests. Overall, our primitives decrease inference latency by more than 35% and increase DNN throughput by 2-3×.« less
  3. Mobile edge computing pushes computationally-intensive services closer to the user to provide reduced delay due to physical proximity. This has led many to consider deploying deep learning models on the edge – commonly known as edge intelligence (EI). EI services can have many model implementations that provide different QoS. For instance, one model can perform inference faster than another (thus reducing latency) while achieving less accuracy when evaluated. In this paper, we study joint service placement and model scheduling of EI services with the goal to maximize Quality-of-Servcice (QoS) for end users where EI services have multiple implementations to serve user requests, each with varying costs and QoS benefits. We cast the problem as an integer linear program and prove that it is NP-hard. We then prove the objective is equivalent to maximizing a monotone increasing, submodular set function and thus can be solved greedily while maintaining a (1 – 1/e)-approximation guarantee. We then propose two greedy algorithms: one that theoretically guarantees this approximation and another that empirically matches its performance with greater efficiency. Finally, we thoroughly evaluate the proposed algorithm for making placement and scheduling decisions in both synthetic and real-world scenarios against the optimal solution and some baselines.more »In the real-world case, we consider real machine learning models using the ImageNet 2012 data-set for requests. Our numerical experiments empirically show that our more efficient greedy algorithm is able to approximate the optimal solution with a 0.904 approximation on average, while the next closest baseline achieves a 0.607 approximation on average.« less
  4. Edge Cloud (EC) is poised to brace massive machine type communication (mMTC) for 5G and IoT by providing compute and network resources at the edge. Yet, the EC being regionally domestic with a smaller scale, faces the challenges of bandwidth and computational throughput. Resource management techniques are considered necessary to achieve efficient resource allocation objectives. Software Defined Network (SDN) enabled EC architecture is emerging as a potential solution that enables dynamic bandwidth allocation and task scheduling for latency sensitive and diverse mobile applications in the EC environment. This study proposes a novel Heuristic Reinforcement Learning (HRL) based flowlevel dynamic bandwidth allocation framework and validates it through end-to-end implementation using OpenFlow meter feature. OpenFlow meter provides granular control and allows demand-based flow management to meet the diverse QoS requirements germane to IoT traffics. The proposed framework is then evaluated by emulating an EC scenario based on real NSF COSMOS testbed topology at The City College of New York. A specific heuristic reinforcement learning with linear-annealing technique and a pruning principle are proposed and compared with the baseline approach. Our proposed strategy performs consistently in both Mininet and hardware OpenFlow switches based environments. The performance evaluation considers key metrics associated with real-timemore »applications: throughput, end-to-end delay, packet loss rate, and overall system cost for bandwidth allocation. Furthermore, our proposed linear annealing method achieves faster convergence rate and better reward in terms of system cost, and the proposed pruning principle remarkably reduces control traffic in the network.« less
  5. Mobile devices such as drones and autonomous vehicles increasingly rely on object detection (OD) through deep neural networks (DNNs) to perform critical tasks such as navigation, target-tracking and surveillance, just to name a few. Due to their high complexity, the execution of these DNNs requires excessive time and energy. Low-complexity object tracking (OT) is thus used along with OD, where the latter is periodically applied to generate "fresh" references for tracking. However, the frames processed with OD incur large delays, which does not comply with real-time applications requirements. Offloading OD to edge servers can mitigate this issue, but existing work focuses on the optimization of the offloading process in systems where the wireless channel has a very large capacity. Herein, we consider systems with constrained and erratic channel capacity, and establish parallel OT (at the mobile device) and OD (at the edge server) processes that are resilient to large OD latency. We propose Katch-Up, a novel tracking mechanism that improves the system resilience to excessive OD delay. We show that this technique greatly improves the quality of the reference available to tracking, and boosts performance up to 33%. However, while Katch-Up significantly improves performance, it also increases the computing loadmore »of the mobile device. Hence, we design SmartDet, a low-complexity controller based on deep reinforcement learning (DRL) that learns to achieve the right trade-off between resource utilization and OD performance. SmartDet takes as input highly-heterogeneous context-related information related to the current video content and the current network conditions to optimize frequency and type of OD offloading, as well as Katch-Up utilization. We extensively evaluate SmartDet on a real-world testbed composed by a JetSon Nano as mobile device and a GTX 980 Ti as edge server, connected through a Wi-Fi link, to collect several network-related traces, as well as energy measurements. We consider a state-of-the-art video dataset (ILSVRC 2015 - VID) and state-of-the-art OD models (EfficientDet 0, 2 and 4). Experimental results show that SmartDet achieves an optimal balance between tracking performance – mean Average Recall (mAR) and resource usage. With respect to a baseline with full Katch-Up usage and maximum channel usage, we still increase mAR by 4% while using 50% less of the channel and 30% power resources associated with Katch-Up. With respect to a fixed strategy using minimal resources, we increase mAR by 20% while using Katch-Up on 1/3 of the frames.« less