skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yin, Xiaolong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    CO 2 -based enhanced oil recovery is widely practiced. The current understanding of its mechanisms largely focuses on bulk phenomena such as achieving miscibility or reducing oil density and viscosity. Using molecular dynamics simulations, we show that CO 2 adsorption on calcite surfaces impedes decane transport at moderate adsorption density but enhances decane transport when CO 2 adsorption approaches surface saturation. These effects change the decane permeability through 8 nm-wide pores by up to 30% and become negligible only in pores wider than several tens of nanometers. The strongly nonlinear, non-monotonic dependence of decane permeability on CO 2 adsorption is traced to CO 2 's modulation of interfacial structure of long-chain hydrocarbons, and thus the slippage between interfacial hydrocarbon layers and between interfacial CO 2 and hydrocarbon layers. These results highlight a new and critical role of CO 2 -induced interfacial effects in influencing oil recovery from unconventional reservoirs, whose porosity is dominated by nanopores. 
    more » « less
  2. Bounding walls or immersed surfaces are utilized in many industrial systems as the primary thermal source to heat a gas–solids mixture. Previous efforts to resolve the solids’ heat transfer near a boundary involve the extension of unbounded convection correlations into the near-wall region in conjunction with particle-scale theories for indirect conduction. Moreover, unbounded drag correlations are utilized in the near-wall region (without modification) to resolve the force exerted on a solid particle by the fluid. We rigorously test unbounded correlations and indirect conduction theory against outputs from direct numerical simulation of laminar flow past a hot plate and a static, cold particle. Here, local variables are utilized for consistency with unresolved computational fluid dynamics discrete element methods and lead to new unbounded correlations that are self-similar to those obtained with free-stream variables. The new drag correlation with local fluid velocity captures the drag force in both the unbounded system as well as the near-wall region while the classic, unbounded drag correlation with free-stream fluid velocity dramatically over-predicts the drag force in the near-wall region. Similarly, classic, unbounded convection correlations are found to under-predict the heat transfer occurring in the near-wall region. Inclusion of indirect conduction, in addition to unbounded convection, performs markedly better. To account for boundary effects, a new Nusselt correlation is developed for the heat transfer in excess of local, unbounded convection. The excess wall Nusselt number depends solely on the dimensionless particle–wall separation distance and asymptotically decays to zero for large particle–wall separation distances, seaming together the unbounded and near-wall regions. 
    more » « less
  3. In nanoporous rocks, potential size/mobility exclusion and fluid-rock interactions in nano-sized pores and pore throats may turn the rock into a semi-permeable membrane, blocking or hindering the passage of certain molecules while allowing other molecules to pass freely. In this work, we conducted several experiments to investigate whether Niobrara samples possess such sieving properties on hydrocarbon molecules. Molecular dynamics simulation of hydrocarbon adsorption was performed to help understand the trends observed in the experiments. The procedure of the experiments includes pumping of liquid binary hydrocarbon mixtures (C10, C17) of known compositions into Niobrara samples, collecting of the effluents from the samples, and analysis of the compositions of the effluents. A specialized experimental setup that uses an in-line filter as a mini-core holder was built for this investigation. Niobrara samples were cored and machined into 0.5-inch diameter and 0.7-inch length mini-cores. Hydrocarbon mixtures were injected into the mini-cores and effluents were collected periodically and analyzed using gas chromatography. To understand the potential effects of hydrocarbon-rock interactions on their transport, molecular dynamics simulations were performed to clarify the adsorption of C10 and C17 molecules on calcite surfaces using all-atom models. Experimental results show that the heavier component (C17) in the injected fluid was noticeably hindered. After the start of the experiment, the fraction of the lighter component (C10) in the produced fluid gradually increased and eventually reached levels that fluctuated within a range above the fraction of C10 in the original fluid; besides, the fraction of C17 increased in the fluid upstream of the sample. Both observations indicate the presence of membrane properties of the sample to this hydrocarbon mixture. Simulation results suggest that, for a calcite surface in equilibrium with a binary mixture of C10 and C17, more C17 molecules adsorb on the carbonate surface than the C10 molecules, providing a mechanism that directly supports the experimental observations. Some experimental observations suggest that size/mobility exclusion should also exist. This experimental study is the first evidence that nanoporous reservoir rocks may possess membrane properties that can filter hydrocarbon molecules. Component separation due to membrane properties has not been considered in any reservoir simulation models. The consequence of this effect and its dependence on the mixture and environmental conditions (surface, pressure, temperature) are worthy of further investigations. 
    more » « less