skip to main content


Title: Experimental and Molecular Insights on Sieving of Hydrocarbon Mixtures in Niobrara Shale
In nanoporous rocks, potential size/mobility exclusion and fluid-rock interactions in nano-sized pores and pore throats may turn the rock into a semi-permeable membrane, blocking or hindering the passage of certain molecules while allowing other molecules to pass freely. In this work, we conducted several experiments to investigate whether Niobrara samples possess such sieving properties on hydrocarbon molecules. Molecular dynamics simulation of hydrocarbon adsorption was performed to help understand the trends observed in the experiments. The procedure of the experiments includes pumping of liquid binary hydrocarbon mixtures (C10, C17) of known compositions into Niobrara samples, collecting of the effluents from the samples, and analysis of the compositions of the effluents. A specialized experimental setup that uses an in-line filter as a mini-core holder was built for this investigation. Niobrara samples were cored and machined into 0.5-inch diameter and 0.7-inch length mini-cores. Hydrocarbon mixtures were injected into the mini-cores and effluents were collected periodically and analyzed using gas chromatography. To understand the potential effects of hydrocarbon-rock interactions on their transport, molecular dynamics simulations were performed to clarify the adsorption of C10 and C17 molecules on calcite surfaces using all-atom models. Experimental results show that the heavier component (C17) in the injected fluid was noticeably hindered. After the start of the experiment, the fraction of the lighter component (C10) in the produced fluid gradually increased and eventually reached levels that fluctuated within a range above the fraction of C10 in the original fluid; besides, the fraction of C17 increased in the fluid upstream of the sample. Both observations indicate the presence of membrane properties of the sample to this hydrocarbon mixture. Simulation results suggest that, for a calcite surface in equilibrium with a binary mixture of C10 and C17, more C17 molecules adsorb on the carbonate surface than the C10 molecules, providing a mechanism that directly supports the experimental observations. Some experimental observations suggest that size/mobility exclusion should also exist. This experimental study is the first evidence that nanoporous reservoir rocks may possess membrane properties that can filter hydrocarbon molecules. Component separation due to membrane properties has not been considered in any reservoir simulation models. The consequence of this effect and its dependence on the mixture and environmental conditions (surface, pressure, temperature) are worthy of further investigations.  more » « less
Award ID(s):
1705287
NSF-PAR ID:
10106361
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SPE/AAPG/SEG Unconventional Resources Technology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fluids confined in nanopores are ubiquitous in nature and technology. In recent years, the interest in confined fluids has grown, driven by research on unconventional hydrocarbon resources -- shale gas and shale oil, much of which are confined in nanopores. When fluids are confined in nanopores, many of their properties differ from those of the same fluid in the bulk. These properties include density, freezing point, transport coefficients, thermal expansion coefficient, and elastic properties. The elastic moduli of a fluid confined in the pores contribute to the overall elasticity of the fluid-saturated porous medium and determine the speed at which elastic waves traverse through the medium. Wave propagation in fluid-saturated porous media is pivotal for geophysics, as elastic waves are used for characterization of formations and rock samples. In this paper, we present a comprehensive review of experimental works on wave propagation in fluid-saturated nanoporous media, as well as theoretical works focused on calculation of compressibility of fluids in confinement. We discuss models that bridge the gap between experiments and theory, revealing a number of open questions that are both fundamental and applied in nature. While some results were demonstrated both experimentally and theoretically (e.g. the pressure dependence of compressibility of fluids), others were theoretically predicted, but not verified in experiments (e.g. linear scaling of modulus with the pore size). Therefore, there is a demand for the combined experimental-modeling studies on porous samples with various characteristic pore sizes. The extension of molecular simulation studies from simple model fluids to the more complex molecular fluids is another open area of practical interest. 
    more » « less
  2. Abstract

    Geological storage of carbon dioxide (CO2) in depleted gas reservoirs represents a cost-effective solution to mitigate global carbon emissions. The surface chemistry of the reservoir rock, pressure, temperature, and moisture content are critical factors that determine the CO2 adsorption capacity and storage mechanisms. Shale-gas reservoirs are good candidates for this application. However, the interactions of CO2 and organic content still need further investigation. The objectives of this paper are to (i) experimentally investigate the effect of pressure and temperature on the CO2 adsorption capacity of activated carbon, (ii) quantify the nanoscale interfacial interactions between CO2 and the activated carbon surface using Monte Carlo molecular modeling, and (iii) quantify the correlation between the adsorption isotherms of activated carbon-CO2 system and the actual carbon dioxide adsorption on shale-gas rock at different temperatures and geochemical conditions. Activated carbon is used as a proxy for kerogen. The objectives aim at obtaining a better understanding of the behavior of CO2 injection and storage into shale-gas formations.

    We performed experimental measurements and Grand Canonical Monte Carlo (GCMC) simulations of CO2 adsorption onto activated carbon. The experimental work involved measurements of the high-pressure adsorption capacity of activated carbon using pure CO2 gas. Subsequently, we performed a series of GCMC simulations to calculate CO2 adsorption capacity on activated carbon to validate the experimental results. The simulated activated carbon structure consists of graphite sheets with a distance between the sheets equal to the average actual pore size of the activated carbon sample. Adsorption isotherms were calculated and modeled for each temperature value at various pressures.

    The adsorption of CO2 on activated carbon is favorable from the energy and kinetic point of view. This is due to the presence of a wide micro to meso pore sizes that can accommodate a large amount of CO2 particles. The results of the experimental work show that excess adsorption results for gas mixtures lie in between the results for pure components. The simulation results agree with the experimental measurements. The strength of CO2 adsorption depends on both surface chemistry and pore size of activated carbon. Once strong adsorption sites within nanoscale network are established, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. The outcomes of this paper provides new insights about the parameters affecting CO2 adsorption and storage in shale-gas reservoirs, which is critical for developing standalone representative models for CO2 adsorption on pure organic carbon.

     
    more » « less
  3. Predicting the mixing free energy of mixing for binary mixtures using simulations is challenging. We present a novel molecular dynamics (MD) simulation method to extract the chemical potential μ ( X ) for mixtures of species A and B. Each molecule of species A and B is placed in equal and opposite harmonic potentials ±(1/2) U ex ( x ) centered at the middle of the simulation box, resulting in a nonuniform mole fraction profile X ( z ) in which A is concentrated at the center, and B at the periphery. Combining these, we obtain U ex ( X ), the exchange chemical potential required to induce a given deviation of the mole fraction from its average. Simulation results for U ex ( X ) can be fitted to simple free energy models to extract the interaction parameter χ for binary mixtures. To illustrate our method, we investigate benzene–pyridine mixtures, which provide a good example of regular solution behavior, using both TraPPE united-atom and OPLS all-atom potentials, both of which have been validated for pure fluid properties. χ values obtained with the new method are consistent with values from other recent simulation methods. However, the TraPPE-UA results differ substantially from the χ obtained from VLE experimental data, while the OPLS-AA results are in reasonable agreement with experiment, highlighting the importance of accurate potentials in correctly representing mixture behavior. 
    more » « less
  4. The characterization of petrophysical and geomechanical properties of source rocks presents inherent challenges due to lithology heterogeneity, lamination, distribution of organic matter, and presence of fractures. Organic-rich shales also present some distinctive features that make hydrocarbon production and CO2 geological storage unique in these rocks. The objective of this paper is to quantify and model the deformational behavior of carbon-based compounds due to changes of stress and pressure that happen simultaneously with gas adsorption and desorption processes. We designed an experimental procedure that consists of: (1) compaction of organic-rich grains/powder under oedometric conditions, (2) measurement of poromechanical properties in the absence of adsorption effects using helium in a triaxial cell through independent changes of confining pressure and pore pressure, (3) measurement of the adsorption strain, and stress for methane (CH4). An adsorptive-poromechanical model permits explaining the experimental data, discriminating between the strain/stress caused by poroelastic response from the adsorption-induced strain/stress, and measuring the poroelastic-sorption properties of the organic-rich compound. We applied this procedure to activated carbon and measured skeletal volumetric modulus ranging from 11.8 to 16.6 GPa and skeletal adsorption stress of ~100 MPa for CH4 at 7 MPa of adsorbate pressure. The proposed procedure and model are useful to explain and predict the unique properties of carbon-based adsorbents which can be extended to kerogen, a critical component in source rocks.

     
    more » « less
  5. Numerical simulation is a commonly employed technique for studying carbon dioxide (CO2) storage processes in porous media, particularly saline aquifers. It enables the representation of diverse trapping mechanisms and the assessment of CO2 retention capacity within the subsurface. The intricate physicochemical phenomena involved necessitate the incorporation of multiphase flow, accurate depiction of fluid and rock properties, and their interactions. Among these factors, geochemical reaction rates and mechanisms are pivotal for successful CO2 trapping in carbonate reactive rocks. However, research on kinetic parameters and the influence of lithology on CO2 storage remains limited. This limitation is partly due to the challenges faced in laboratory experiments, where the time scale of the reactions and the lack of in situ conditions hinder accurate measurement of mineral reaction rates. This study employs proxy models constructed using response surfaces calibrated with simulation results to address uncertainties associated with geochemical reactions. Monte Carlo simulation is utilized to explore a broader range of parameters and identify influential factors affecting CO2 mineralization. The findings indicate that an open database containing kinetic parameters can support uncertainty assessment. Additionally, the proxy models effectively represent objective functions related to CO2 injectivity and mineralization, with calcite dissolution playing a predominant role. pH, calcite concentration, and CO2 injection rate significantly impact dolomite precipitation, while quartz content remains unaffected.

     
    more » « less