Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Natural hazards, such as weather in space and the terrestrial environment, have the potential to disrupt critical technologies and infrastructures that contribute to national security and economic advancement. Enhancing our understanding of natural hazards is a central part to developing mitigation strategies to avert their impact on technological assets and/or infrastructure. With the support of the broader scientific community, the International Space Weather Initiative (ISWI) and the African Geophysical Society (AGS) successfully organized two international events in September–October 2023, namely, the ISWI space weather school and the AGS Annual Conference. Both events were locally hosted by the Physics Society of Zambia in Lusaka, Zambia. This paper is a summary report of the two events, highlighting efforts focused on advancing scientific research in Africa. The report also outlines some of the major challenges faced and discusses key considerations for organizing future meetings.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract The utilization of the global navigation satellite systems (GNSS) services in both military and civilian applications as well as for scientific investigation has grown exponentially. However, the increasing reliance on GNSS applications has raised concerns about potential risks from intentional radio frequency interference (RFI) transmitters. RFI significantly affects GNSS's environmental monitoring capabilities by inflating the scintillation index and misleading the scientific community with scintillation indices not attributable to ionospheric dynamic events. Consequently, the existing climatological distribution of GNSS scintillations may require careful reevaluation, as it may not adequately filter out RFI induced scintillations. Thus, characterizing the global RFI occurrence regions and developing real‐time detection capabilities to mitigate its effects is critically important. Leveraging GNSS measurements from ground stations and six COSMIC‐2 satellite constellations, we have developed a technique to detect RFI events and identify RFI active regions. Additionally, for the first time, we have implemented techniques that differentiate RFI associated scintillations from scintillations caused by ionospheric turbulence.more » « less
-
Abstract We present the observations of field‐aligned currents and the equatorial electrojet during the 23 March 2023 magnetic storm, focusing on the effect of the drastic decrease of the solar wind dynamic pressure occurred during the main phase. Our observations show that the negative pressure pulse had significant impact to the magnetosphere‐ionosphere system. It weakened large‐scale field‐aligned currents and paused the progression of the storm main phase for ∼3 hr. Due to the sudden decrease of the plasma convection after the negative pressure pulse, the low‐latitude ionosphere was over‐shielded and experienced a brief period of westward penetration electric field, which reversed the direction of the equatorial electrojet. The counter electrojet was observed both in space and on the ground. A transient, localized enhancement of downward field‐aligned current was observed near dawn, consistent with the mechanism for transmitting MHD disturbances from magnetosphere to the ionosphere after the negative pressure pulse.more » « less
-
Abstract Characterization of the global ionospheric irregularities as a function of local time, longitude, altitude, and magnetic activities is still a challenge for radio frequency operations, especially at the low‐latitude region. One of the main reasons is lack of observations due to the unevenly distributed instruments. To overcome this constraint, we developed a new spatial density gradient index (DGRI) at two different scale sizes: small scale and medium/large scale. The DGRI is derived from in situ density measurements onboard recently launched constellation of low‐Earth‐orbiting satellites (COSMIC‐2 and ICON) at the rate of 1 Hz. Hence, the DGRI appeared to be suitable parameter that can be used as a proxy to describe the essential features of ionospheric disturbances that may critically affect our radio wave application as well as to identify the “all clear” zone as a function of longitude, latitude, and local time—at a refreshment rate of 30 min or less.more » « less
-
Abstract. Previous studies utilizing the Global Positioning System(GPS) receivers aboard Jason satellites have performed measurements ofplasmasphere electron content (PEC) by determining the total electroncontent (TEC) above these satellites, which are at altitudes of about 1340 km. This study uses similar methods to determine PEC for the Jason-2receiver for 24 July 2011. These PEC values are compared to previousdeterminations of PEC from a chain of ground-based GPS receivers in Africausing the SCORPION method, with a nominal ionosphere–plasmasphere boundaryat 1000 km. The Jason-2 PECs with elevations greater than 60∘were converted to equivalent vertical PEC and compared to SCORPION verticalPEC determinations. In addition, slant (off-vertical) PECs from Jason-2were compared to a small set of nearly co-aligned ground-based slant PECs.The latter comparison avoids any conversion of Jason-2 slant PEC toequivalent vertical PEC, and it can be considered a more representativecomparison. The mean difference between the vertical PEC (ground-basedminus Jason-2 measurements) values is 0.82 ± 0.28 TEC units (1 TEC unit=1016 electrons m−2). Similarly, the mean differencebetween slant PEC values is 0.168 ± 0.924 TEC units. The Jason-2 slantPEC comparison method may provide a reliable determination for theplasmasphere baseline value for the ground-based receivers, especially ifthe ground stations are confined to only midlatitude or low-latituderegions, which can be affected by a non-negligible PEC baseline.more » « less
-
In this paper, for the first time, simultaneous atmospheric temperature perturbation profiles obtained from the TIMED/SABER satellite and equatorial ion density and vertical plasma drift velocity observations with and without ESF activity obtained from the C/NOFS satellite are used to investigate the effect of gravity waves (GW) on ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs are estimated by applying wavelet analysis techniques. In addition, vertically propagating GWs that dissipate energy in the ionosphere-thermosphere system are investigated using the spectral analysis technique. We find that the vertical wavelength of GW, corresponding to dominant wavelet power, ranges from 12 to 31 km regardless of the conditions of the ionosphere; however, GWs with vertical wavelengths between about 1 to 13 km are found every day, saturated between 90 and 110 km at different longitudinal sectors. Filtering out vertical wavelengths above 13 km from temperature perturbations, ranges of zonal wavelengths of GW (i.e., from about 290 to 950 km) are found corresponding to irregular and non-irregular ionosphere. Similarly, corresponding to dominant oscillations, the zonal wavelength of ion density perturbations is found within 16 to 1520 km. Moreover, we find an excellent agreement among the median zonal wavelengths of GW for the cases of irregular and non-irregular ionosphere and ion density perturbations that are 518, 495, and 491 km, respectively. The results imply that seed perturbations due to GW with a vertical wavelength from about 1 to 13 km evolve to ion density irregularity and may be amplified due to post-sunset vertical upward drift velocity.more » « less
-
Community honours, such as those bestowed by professional scientific societies like the American Geophysical Union (AGU) are an important element of both individual career advancement and contributes to the historical record of scientific progress. The process by which honours are bestowed is not widely shared amongst the community. The purpose of this article is to share the recent experiences of several members of the AGU Space Physics and Aeronomy (SPA) Fellows committee. We outline the criteria for selection, the evaluation process, difficulties encountered by the committee, and steps taken to mitigate these difficulties. Of particular note is the impact of implicit bias in the award system. Steps could be taken by the awarding scientific societies to reduce the impact of these biases, but in the meantime individual award committees can employ some of the strategies we outline in this article. By sharing our experiences, we hope to improve the process of granting awards and honours for the scientists putting together award nominations, future committee members, and the scientific societies granting these awards.more » « less
-
Abstract This paper examined the secular displacement of the dip equator and the geomagnetic poles as well as the variations of the global magnetic inclination and declination angles using magnetometer measurements onboard different low‐Earth orbit (LEO) satellite. The secular variation of the dip equator and geomagnetic poles has different impacts on different applications—from affecting the long‐term characterization of the low‐latitude ionosphere to degrading the precision of geomagnetic navigation. The strong displacement of the dip equator can result in a systematic error in the determination of the long‐term equatorial electric field variations and hence in the characterization of ionospheric density structure, especially in the region, where the displacement of dip equator is large enough (more than 20 km or 0.2°/year) within the time scale of a solar cycle or less. Similarly, the slowly moving locations of magnetic poles, estimated from magnetometer observations onboard LEO satellite, exemplify noticeable discrepancy with that of world magnetic model (WMM) and International Geomagnetic Reference Field (IGRF) values, indicating inevitable possible impact on the precise geomagnetic navigation for commercial and military applications. Thus, accurately estimated locations of the dip equator and magnetic poles, as well as declination angles, are critically important.more » « less
An official website of the United States government
