skip to main content


Search for: All records

Creators/Authors contains: "Yoo, Kwangsun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Heterogeneity in brain activity can give rise to heterogeneity in behavior, which in turn comprises our distinctive characteristics as individuals. Studying the path from brain to behavior, however, often requires making assumptions about how similarity in behavior scales with similarity in brain activity. Here, we expand upon recent work (Finn et al., 2020) which proposes a theoretical framework for testing the validity of such assumptions. Using intersubject representational similarity analysis in two independent movie-watching functional MRI (fMRI) datasets, we probe how brain-behavior relationships vary as a function of behavioral domain and participant sample. We find evidence that, in some cases, the neural similarity of two individuals is not correlated with behavioral similarity. Rather, individuals with higher behavioral scores are more similar to other high scorers whereas individuals with lower behavioral scores are dissimilar from everyone else. Ultimately, our findings motivate a more extensive investigation of both the structure of brain-behavior relationships and the tacit assumption that people who behave similarly will demonstrate shared patterns of brain activity.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-to-moment network fluctuations. Recently, researchers have “unfurled” traditional FC matrices in “edge cofluctuation time series” which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest–based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.

     
    more » « less
  3. Abstract

    Patterns of whole-brain fMRI functional connectivity, or connectomes, are unique to individuals. Previous work has identified subsets of functional connections within these patterns whose strength predicts aspects of attention and cognition. However, overall features of these connectomes, such as how stable they are over time and how similar they are to a group-average (typical) or high-performance (optimal) connectivity pattern, may also reflect cognitive and attentional abilities. Here, we test whether individuals who express more stable, typical, optimal, and distinctive patterns of functional connectivity perform better on cognitive tasks using data from three independent samples. We find that individuals with more stable task-based functional connectivity patterns perform better on attention and working memory tasks, even when controlling for behavioral performance stability. Additionally, we find initial evidence that individuals with more typical and optimal patterns of functional connectivity also perform better on these tasks. These results demonstrate that functional connectome stability within individuals and similarity across individuals predicts individual differences in cognition.

     
    more » « less
  4. Cohen Kadosh, Roi (Ed.)
    Sustained attention (SA) and working memory (WM) are critical processes, but the brain networks supporting these abilities in development are unknown. We characterized the functional brain architecture of SA and WM in 9- to 11-year-old children and adults. First, we found that adult network predictors of SA generalized to predict individual differences and fluctuations in SA in youth. A WM model predicted WM performance both across and within children—and captured individual differences in later recognition memory—but underperformed in youth relative to adults. We next characterized functional connections differentially related to SA and WM in youth compared to adults. Results revealed 2 network configurations: a dominant architecture predicting performance in both age groups and a secondary architecture, more prominent for WM than SA, predicting performance in each age group differently. Thus, functional connectivity (FC) predicts SA and WM in youth, with networks predicting WM performance differing more between youths and adults than those predicting SA. 
    more » « less
  5. Abstract Introduction

    Working memory is a critical cognitive ability that affects our daily functioning and relates to many cognitive processes and clinical conditions. Episodic memory is vital because it enables individuals to form and maintain their self‐identities. Our study analyzes the extent to which whole‐brain functional connectivity observed during completion of anN‐back memory task, a common measure of working memory, can predict both working memory and episodic memory.

    Methods

    We used connectome‐based predictive models (CPMs) to predict 502 Human Connectome Project (HCP) participants' in‐scanner 2‐back memory test scores and out‐of‐scanner working memory test (List Sorting) and episodic memory test (Picture Sequence and Penn Word) scores based on functional magnetic resonance imaging (fMRI) data collected both during rest andN‐back task performance. We also analyzed the functional brain connections that contributed to prediction for each of these models.

    Results

    Functional connectivity observed duringN‐back task performance predicted out‐of‐scanner List Sorting scores and to a lesser extent out‐of‐scanner Picture Sequence scores, but did not predict out‐of‐scanner Penn Word scores. Additionally, the functional connections predicting 2‐back scores overlapped to a greater degree with those predicting List Sorting scores than with those predicting Picture Sequence or Penn Word scores. Functional connections with the insula, including connections between insular and parietal regions, predicted scores across the 2‐back, List Sorting, and Picture Sequence tasks.

    Conclusions

    Our findings validate functional connectivity observed during theN‐back task as a measure of working memory, which generalizes to predict episodic memory to a lesser extent. By building on our understanding of the predictive power ofN‐back task functional connectivity, this work enhances our knowledge of relationships between working memory and episodic memory.

     
    more » « less
  6. Abstract Introduction

    Connectome‐based predictive modeling (CPM) is a recently developed machine‐learning‐based framework to predict individual differences in behavior from functional brain connectivity (FC). In these models, FC was operationalized as Pearson's correlation between brain regions’ fMRI time courses. However, Pearson's correlation is limited since it only captures linear relationships. We developed a more generalized metric of FC based on information flow. This measure represents FC by abstracting the brain as a flow network of nodes that send bits of information to each other, where bits are quantified through an information theory statistic called transfer entropy.

    Methods

    With a sample of individuals performing a sustained attention task and resting during functional magnetic resonance imaging (fMRI) (n = 25), we use the CPM framework to build machine‐learning models that predict attention from FC patterns measured with information flow. Models trained on− 1 participants’ task‐based patterns were applied to an unseen individual's resting‐state pattern to predict task performance. For further validation, we applied our model to two independent datasets that included resting‐state fMRI data and a measure of attention (Attention Network Task performance [n = 41] and stop‐signal task performance [n = 72]).

    Results

    Our model significantly predicted individual differences in attention task performance across three different datasets.

    Conclusions

    Information flow may be a useful complement to Pearson's correlation as a measure of FC because of its advantages for nonlinear analysis and network structure characterization.

     
    more » « less