skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yoo, Kyoung Min"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrated the design and experimental results of the near-infrared lab-on-a-chip optical biosensor platform that monolithically integrates the micro-ring-resonator and the on-chip spectrometer on the SOI wafer with the limit of detection of 0.042 RIU.

     
    more » « less
  2. Jelena Vuckovic (Ed.)
    On-chip broadband optical spectrometers that cover the entire tissue transparency window (λ = 650–1050 nm) with high resolution are highly demanded for miniaturized biosensing and bioimaging applications. The standard spatial heterodyne Fourier transform spectrometer (SHFTS) requires a large number of Mach–Zehnder interferometer (MZI) arrays to obtain a broad spectral bandwidth while maintaining high resolution. Here, we propose a novel type of SHFTS integrated with a subwavelength grating coupler (SWGC) for the dual-polarization bandpass sampling on the Si3N4 platform to solve the intrinsic trade-off limitation between the bandwidth and resolution of the SHFTS without having an outrageous number of MZI arrays or adding additional active photonic components. By applying the bandpass sampling theorem, the continuous broadband input spectrum is divided into multiple narrow-band channels through tuning the phase-matching condition of the SWGC with different polarization and coupling angles. Thereby, it is able to reconstruct each band separately far beyond the Nyquist criterion without aliasing error or degrading the resolution. We experimentally demonstrated the broadband spectrum retrieval results with the overall bandwidth coverage of 400 nm, bridging the wavelengths from 650 to 1050 nm, with a resolution of 2–5 nm. The bandpass sampling SHFTS is designed to have 32 linearly unbalanced MZIs with the maximum optical path length difference of 93 μm within an overall footprint size of 4.7 mm × 0.65 mm, and the coupling angles of SWGC are varied from 0° to 32° to cover the entire tissue transparency window. 
    more » « less
  3. In this paper, we present a hollow-core vertical photonic crystal waveguide geometry in silicon for gas detection in the mid-infrared region. The dispersion is engineered to enhance light-matter interactions inside the hollow-core defect.

     
    more » « less
  4. Schröder, Henning ; Chen, Ray T. (Ed.)