Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Language models are increasingly being deployed for general problem solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, “Tree of Thoughts” (ToT), which generalizes over the popular “Chain of Thought” approach to prompting language models, and enables exploration over coherent units of text (“thoughts”) that serve as intermediate steps toward problem solving. ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices. Our experiments show that ToT significantly enhances language models’ problem-solving abilities on three novel tasks requiring non-trivial planning or search: Game of 24, Creative Writing, and Mini Crosswords. For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only solved 4% of tasks, our method achieved a success rate of 74%. Code repo with all prompts: https://github.com/princeton-nlp/tree-of-thought-llm.more » « less
-
Over the past several years, due to the progression toward data-driven scientific disciplines, the field of Big Data has gained significant importance. These developments pose certain challenges in the area of efficient, effective, and secure management and transmission of digital information. This paper presents and evaluates a novel Distributed Ledger Technology (DLT) system, Fibereum, in a variety of use-cases, including a DLT-based system for Big Data exchange, as well as the fungible and non-fungible exchange of artwork, goods, commodities, and digital currency. Fibereum’s innovations include the application of non-linear data structures and a new concept of Lazy Verification. We demonstrate the benefits of these novel features for DLT system applications’ cost performance and their added resilience towards cyber-attacks via the consideration of several use cases.more » « less
-
Over the past several years, due to the progression toward data-driven scientific disciplines, the field of BigData has gained significant importance. These developments pose certain challenges in the area of efficient, effective, and secure management and transmission of digital information. This paper presents and evaluates a novel Distributed Ledger Technology (DLT) system, Fibereum, in a variety of use-cases, including a DLT-based system for Big Data exchange, as well as the fungible and non-fungible exchange of artwork, goods, commodities, and digital currency. Fibereum’s innovations include the application of non-linear data structures and a new concept of Lazy Verification. We demonstrate the benefits of these novel features for DLT system applications’ cost performance and their added resilience towards cyber-attacks via the consideration of several use cases.more » « less
-
Abstract The combination of a geometrically frustrated lattice, and similar energy scales between degrees of freedom endows two-dimensional Kagome metals with a rich array of quantum phases and renders them ideal for studying strong electron correlations and band topology. The Kagome metal, FeGe is a noted example of this, exhibiting A-type collinear antiferromagnetic (AFM) order atTN ≈ 400 K, then establishes a charge density wave (CDW) phase coupled with AFM ordered moment belowTCDW ≈ 110 K, and finally forms ac-axis double cone AFM structure aroundTCanting ≈ 60 K. Here we use neutron scattering to demonstrate the presence of gapless incommensurate spin excitations associated with the double cone AFM structure of FeGe at temperatures well aboveTCantingandTCDWthat merge into gapped commensurate spin waves from the A-type AFM order. Commensurate spin waves follow the Bose factor and fit the Heisenberg Hamiltonian, while the incommensurate spin excitations, emerging belowTNwhere AFM order is commensurate, start to deviate from the Bose factor aroundTCDW, and peaks atTCanting. This is consistent with a critical scattering of a second order magnetic phase transition with decreasing temperature. By comparing these results with density functional theory calculations, we conclude that the incommensurate magnetic structure arises from the nested Fermi surfaces of itinerant electrons and the formation of a spin density wave order.more » « less
-
Hydrological systems in the Anthropocene have shown substantial shifts from their natural processes due to human modifications. Consequently, deploying coupled human-water modeling is a critical tool to analyze observed changes. However, the development of socio-hydrological models often requires extensive qualitative data collection in the field and analysis. Despite the advances in developing inter-disciplinary methodologies in utilizing qualitative data for coupled human-water modeling, there is a need to identify influential parameters in these systems to inform data collection. Here, we present an exploratory socio-hydrological model to systemically investigate the feedback system of public infrastructure providers, resource users, and the dynamics of water scarcity at the catchment scale to inform data collection and analysis in the field. Specifically, we propose a novel socio-hydrological model by employing and integrating a top-down hydrological model and an extension of Aqua.MORE Model (an Agent-Based Model designed to simulate dynamics of water supply and demand). Specifically, we model alternate behavioral theories of human decision-making to represent the agents" behavior. Then, we perform sensitivity analysis techniques to identify key socio-economic and behavioral parameters affecting emergence patterns in a stylized human-dominated catchment. We apply the proposed methodology to the Lake Mendocino Watershed in Northern California, US. The results will potentially point which parameters are influential and how they could be mapped to a particular interview or survey question. This study will help us to identify features of decision-making behavior for inclusion in fieldwork, that be might be overlooked in the absence of the proposed modeling. We anticipate that the proposed approach also contributes to the current Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) which aims at improving the interpretation of the hydrological processes governing the socio-hydrological systems by focusing on their changing dynamics in connection with rapidly changing human systems.more » « less
-
A<sc>bstract</sc> A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC and correspond to an integrated luminosity of 36.7–126.9 fb−1, depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125–1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models.more » « lessFree, publicly-accessible full text available June 1, 2026
-
We propose a simple, fast, and accurate one-stage approach to visual grounding, inspired by the following insight. The performances of existing propose-and-rank twostage methods are capped by the quality of the region candidates they propose in the first stage — if none of the candidates could cover the ground truth region, there is no hope in the second stage to rank the right region to the top. To avoid this caveat, we propose a one-stage model that enables end-to-end joint optimization. The main idea is as straightforward as fusing a text query’s embedding into the YOLOv3 object detector, augmented by spatial features so as to account for spatial mentions in the query. Despite being simple, this one-stage approach shows great potential in terms of both accuracy and speed for both phrase localization and referring expression comprehension, according to our experiments. Given these results along with careful investigations into some popular region proposals, we advocate for visual grounding a paradigm shift from the conventional two-stage methods to the one-stage framework.more » « less
-
A<sc>bstract</sc> The measurements of the Higgs boson (H) production cross sections performed by the CMS Collaboration in the four-lepton (4ℓ, ℓ= e,μ) final state at a center-of-mass energy$$\sqrt{s}$$= 13.6 TeV are presented. These measurements are based on data collected with the CMS detector at the CERN LHC in 2022, corresponding to an integrated luminosity of 34.7 fb−1. Cross sections are measured in a fiducial region closely matching the experimental acceptance, both inclusively and differentially, as a function of the transverse momentum and the absolute value of the rapidity of the four-lepton system. The H → ZZ → 4ℓinclusive fiducial cross section is measured to be$${2.89}_{-0.49}^{+0.53}{\left({\text{stat}}\right)}_{-0.21}^{+0.29}\left({\text{syst}}\right)$$fb, in agreement with the standard model expectation of$${3.09}_{-0.24}^{+0.27}$$fb.more » « lessFree, publicly-accessible full text available May 1, 2026
-
A measurement of the Higgs boson mass and width via its decay to two bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of at a center-of-mass energy of 13 TeV, is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, , and an upper limit on the width at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of , in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations. © 2025 CERN, for the CMS Collaboration2025CERNmore » « lessFree, publicly-accessible full text available May 1, 2026