skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yu, Heng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.

     
    more » « less
    Free, publicly-accessible full text available May 7, 2025
  3. ABSTRACT

    We present a new analysis of the rest-frame ultraviolet (UV) and optical spectra of a sample of three z > 8 galaxies discovered behind the gravitational lensing cluster RX J2129.4+0009. We combine these observations with z > 7.5 galaxies from the literature, for which similar measurements are available. As already pointed out in other studies, the high [O iii]λ5007/[O ii]λ3727 ratios (O32) and steep UV continuum slopes (β) are consistent with the values observed for low-redshift Lyman continuum emitters, suggesting that such galaxies contribute to the ionizing budget of the intergalactic medium. We construct a logistic regression model to estimate the probability of a galaxy being a Lyman continuum emitter based on the measured MUV, β, and O32. Using this probability and the UV luminosity function, we construct an empirical model that estimates the contribution of high-redshift galaxies to reionization. The preferred scenario in our analysis shows that at z ∼ 8, the average escape fraction of the galaxy population [i.e. including both LyC emitters (LCEs) and non-emitters] varies with MUV, with intermediate UV luminosity (−19 < MUV < −16) galaxies having larger escape fraction. Galaxies with faint UV luminosity (−16 < MUV < −13.5) contribute most of the ionizing photons. The relative contribution of faint versus bright galaxies depends on redshift, with the intermediate UV galaxies becoming more important over time. UV bright galaxies, although more likely to be LCEs at a given log(O32) and β, contribute the least of the total ionizing photon budget.

     
    more » « less
  4. Abstract

    A tight positive correlation between the stellar mass and the gas-phase metallicity of galaxies has been observed at low redshifts. The redshift evolution of this correlation can strongly constrain theories of galaxy evolution. The advent of JWST allows probing the mass–metallicity relation at redshifts far beyond what was previously accessible. Here we report the discovery of two emission line galaxies at redshifts 8.15 and 8.16 in JWST NIRCam imaging and NIRSpec spectroscopy of targets gravitationally lensed by the cluster RX J2129.4+0005. We measure their metallicities and stellar masses along with nine additional galaxies at 7.2 <zspec< 9.5 to report the first quantitative statistical inference of the mass–metallicity relation atz≈ 8. We measure ∼0.9 dex evolution in the normalization of the mass–metallicity relation fromz≈ 8 to the local universe; at a fixed stellar mass, galaxies are 8 times less metal enriched atz≈ 8 compared to the present day. Our inferred normalization is in agreement with the predictions of FIRE simulations. Our inferred slope of the mass–metallicity relation is similar to or slightly shallower than that predicted by FIRE or observed at lower redshifts. We compare thez≈ 8 galaxies to extremely low-metallicity analog candidates in the local universe, finding that they are generally distinct from extreme emission line galaxies or “green peas,” but are similar in strong emission line ratios and metallicities to “blueberry galaxies.” Despite this similarity, at a fixed stellar mass, thez≈ 8 galaxies have systematically lower metallicities compared to blueberry galaxies.

     
    more » « less
  5. A photochemical C(sp 3 )–H oxygenation of alkane and arene substrates catalyzed by [NEt 4 ] 2 [Ce IV Cl 6 ] under mild conditions (1 atm, 25 °C) is described. Time-course studies reveal that the hydrocarbons are oxidized in a stepwise fashion to afford alcohols, aldehydes, ketones, and carboxylic acids. The catalyst resting state, [Ce IV Cl 6 ] 2− , is observed by UV-visible spectroscopy. On/off light-switching experiments, quantum yield measurements, and the absence of a kinetic isotope effect on parallel C–H/C–D functionalization suggest that ligand-to-metal charge transfer of [NEt 4 ] 2 [Ce IV Cl 6 ] to generate Cl˙ is the turnover-limiting step. The involvement of a highly reducing excited-state [NEt 4 ] 3 [Ce III Cl 6 ]* species as well as photo-excited aldehyde, under black light irradiation appears to facilitate the conversion of primary alcohols and aldehydes to carboxylic acids. Remarkably, this approach is found to be capable of direct activation of light alkanes, including methane and ethane. 
    more » « less
  6. Smith, Keith (Ed.)
    Ultraviolet light from early galaxies is thought to have ionized gas in the intergalactic medium. However, there are few observational constraints on this epoch because of the faintness of those galaxies and the redshift of their optical light into the infrared. We report the observation, in JWST imaging, of a distant galaxy that is magnified by gravitational lensing. JWST spectroscopy of the galaxy, at rest-frame optical wavelengths, detects strong nebular emission lines that are attributable to oxygen and hydrogen. The measured redshift is z= 9.51 ± 0.01, corresponding to 510 million years after the Big Bang. The galaxy has a radius of 16.2-7.2+4.6 parsecs, which is substantially more compact than galaxies with equivalent luminosity at z~ 6 to 8, leading to a high star formation rate surface density. 
    more » « less
  7. Degradation or failure events in optical backbone networks affect the service level agreements for cloud services. It is critical to detect and troubleshoot these events promptly to minimize their impact. Existing telemetry systems rely on arcane tools (e.g., SNMP) and vendor-specific controllers to collect optical data, which affects both the flexibility and scale of these systems. As a result, they fail to collect the required data on time to detect and troubleshoot degradation or failure events in a timely fashion. This paper presents the design and implementation of OpTel, an optical telemetry system, that uses a centralized vendor-agnostic controller to collect optical data in a streaming fashion. More specifically, it offers flexible vendor-agnostic interfaces between the optical devices and the controller and offloads data-management tasks (e.g., creating a queryable database) from the devices to the controller. As a result, OpTel enables the collection of fine-grained optical telemetry data at the one-second granularity. It has been running in Tencent's optical backbone network for the past six months. The fine-grained data collection enables the detection of short-lived events (i.e., ephemeral events). Compared to existing telemetry systems, OpTel accurately detects 2x more optical events. It also enables troubleshooting of these optical events in a few seconds, which is orders of magnitude faster than the state-of-the-art. 
    more » « less
  8. null (Ed.)