Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., > 30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations.more » « lessFree, publicly-accessible full text available June 4, 2025
-
Abstract The response of highly productive croplands at northern mid-latitudes to climate change is a primary source of uncertainty in the global carbon cycle, and a concern for future food production. We present a decadal time series (2007 to 2019) of hourly CO 2 concentration measured at a very tall tower in the United States Corn Belt. Analyses of this record, with other long-term data in the region, reveal that warming has had a positive impact on net CO 2 uptake during the early crop growth stage, but has reduced net CO 2 uptake in both croplands and natural ecosystems during the peak growing season. Future increase in summer temperature is projected to reduce annual CO 2 sequestration in the Corn Belt by 10–20%. These findings highlight the dynamic control of warming on cropland CO 2 exchange and crop yields and challenge the paradigm that warming will continue to favor CO 2 sequestration in northern mid-latitude ecosystems.more » « less
-
Abstract Accurately quantifying and predicting the reactive transport of nitrate () in hydrologic systems continues to be a challenge, due to the complex hydrological and biogeochemical interactions that underlie this transport. Recent advances related to time‐variant water age have led to a new method that probes water mixing and selection behaviors using StorAge Selection (SAS) functions. In this study, SAS functions were applied to investigate storage, water selection behaviors, and export regimes in a tile‐drained corn‐soybean field. The natural abundance stable nitrogen and oxygen isotopes of tile drainage were also measured to provide constraints on biogeochemical transformations. The SAS functions, calibrated using chloride measurements at tile drain outlets, revealed a strong young water preference during tile discharge generation. The use of a time‐variant SAS function for tile discharge generated unique water age dynamics that reveal an inverse storage effect driven by the activation of preferential flow paths and mechanically explain the observed variations in isotopes. Combining the water age estimates with isotope fingerprinting shed new light on export dynamics at the tile‐drain scale, where a large mixing volume and the lack of a strong vertical contrast in concentration resulted in chemostatic export regimes. For the first time, isotopes were embedded into a water age‐based transport model to model reactive transport under transient conditions. The results of this modeling study provided a proof‐of‐concept for the potential of coupling water age modeling with isotope analysis to elucidate the mechanisms driving reactive transport.
-
Abstract Atmospheric ammonia (NH3) has increased dramatically as a consequence of the production of synthetic nitrogen (N) fertilizer and proliferation of intensive livestock systems. It is a chemical of environmental concern as it readily reacts with atmospheric acids to produce fine particulate matter and indirectly contributes to nitrous oxide (N2O) emissions. Here, we present the first tall tower observations of NH3within the U.S. Corn Belt for the period April 2017 through December 2018. Hourly average NH3mixing ratios were measured at 100 and 56 m above the ground surface and fluxes were estimated using a modified gradient approach. The highest NH3mixing ratios (>30 nmol mol−1) occurred during early spring and late fall, coinciding with the timing of fertilizer application within the region and the occurrence of warm air temperatures. Net ecosystem NH3exchange was greatest in spring and fall with peak emissions of about +50 nmol m−2 s−l. Annual NH3emissions estimated using state‐of‐the‐art inventories ranged from 0.6 to 1.4 × the mean annual gross tall tower fluxes (+2.1 nmol m−2 s−1). If the tall tower observations are representative of the Upper Midwest and broader U.S. Corn Belt regions, the annual gross emissions were +720 Gg NH3‐N y−1and +1,340 Gg NH3‐N y−1, respectively. Finally, considering the N2O budget over the same region, we estimated total reactive N emissions (i.e., N2O + NH3) of approximately 1,790 Gg N y−1from the U.S. Corn Belt, representing ~23% of the current annual new N input.