Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 16, 2025
-
Cyberbullying is a well-known social issue, and it is escalating day by day. Due to the vigorous development of the internet, social media provide many different ways for the user to express their opinions and exchange information. Cyberbullying occurs on social media using text messages, comments, sharing images and GIFs or stickers, and audio and video. Much research has been done to detect cyberbullying on textual data; some are available for images. Very few studies are available to detect cyberbullying on GIFs/stickers. We collect a GIF dataset from Twitter and Applied a deep learning model to detect cyberbullying from the dataset. Firstly, we extracted hashtags related to cyberbullying using Twitter. We used these hashtags to download GIF file using publicly available API GIPHY. We collected over 4100 GIFs including cyberbullying and non-cyberbullying. we applied deep learning pre-trained model VGG16 for the detection of the cyberbullying. The deep learning model achieved the accuracy of 97%. Our work provides the GIF dataset for researchers working in this area.more » « lessFree, publicly-accessible full text available September 5, 2025
-
null (Ed.)In biometric systems, the process of identifying or verifying people using facial data must be highly accurate to ensure a high level of security and credibility. Many researchers investigated the fairness of face recognition systems and reported demographic bias. However, there was not much study on face presentation attack detection technology (PAD) in terms of bias. This research sheds light on bias in face spoofing detection by implementing two phases. First, two CNN (convolutional neural network)-based presentation attack detection models, ResNet50 and VGG16 were used to evaluate the fairness of detecting imposer attacks on the basis of gender. In addition, different sizes of Spoof in the Wild (SiW) testing and training data were used in the first phase to study the effect of gender distribution on the models’ performance. Second, the debiasing variational autoencoder (DB-VAE) (Amini, A., et al., Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure) was applied in combination with VGG16 to assess its ability to mitigate bias in presentation attack detection. Our experiments exposed minor gender bias in CNN-based presentation attack detection methods. In addition, it was proven that imbalance in training and testing data does not necessarily lead to gender bias in the model’s performance. Results proved that the DB-VAE approach (Amini, A., et al., Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure) succeeded in mitigating bias in detecting spoof faces.more » « less
-
Skeleton-Based Activity recognition is an active research topic in Computer Vision. In recent years, deep learning methods have been used in this area, including Recurrent Neural Network (RNN)-based, Convolutional Neural Network (CNN)-based and Graph Convolutional Network (GCN)-based approaches. This paper provides a survey of recent work on various Graph Convolutional Network (GCN)-based approaches being applied to Skeleton-Based Activity Recognition. We first introduce the conventional implementation of a GCN. Then methods that address the limitations of conventional GCN's are presented.more » « less
-
null (Ed.)Software-Defined Networking (SDN) represents a major transition from traditional hardware-based networks to programmable software-based networks. While SDN brings visibility, elasticity, flexibility, and scalability, it also presents security challenges. This paper describes some of the hands-on labs we developed for teaching SDN security using the CloudLab platform. The hands-on labs have been used in a graduate level course on SDN/NFV related technologies. Our teaching experience of the hands-on labs is discussed. The hands-on labs can be adopted by other instructors to teach SDN security.more » « less
-
Software-Defined Networking (SDN) has been changing inflexible networks in software-based programmable networks for more flexibility, scalability, and visibility into networking. At the same time, it brings many new security challenges, but there are very few educational materials for students in learning about SDN security. In this workshop, we present our newly designed SDN security education materials, which can be used to meet the ever-increasing demand for high-quality cybersecurity professionals with expertise in SDN security. For effective hands-on learning, the security labs are designed in CloudLab, a free open cloud platform supported by NSF. Participants receive handouts describing security problems, lab instructions, techniques to use CloudLab, and worksheets for Q&A, which can be directly used for their networking classes at their home institutions. The workshop proceeds in three sessions in which we: present the way to use CloudLab and to understand SDN; practice in simulating three networking attacks in SDN on CloudLab; and discussion and critique in small groups for new SDN security labs.more » « less
-
Software-Defined Networking (SDN) represents a major shift from ossified hardware-based networks to programmable software-based networks. It introduces significant granularity, visibility, and flexibility into networking, but at the same time brings new security challenges. Although the research community is making progress in addressing both the opportunities in SDN and the accompanying security challenges, very few educational materials have been designed to incorporate the latest research results and engage students in learning about SDN security. In this paper, we presents our newly designed SDN security education materials, which can be used to meet the ever-increasing demand for high quality cybersecurity professionals with expertise in SDN security. The designed security education materials incorporate the latest research results in SDN security and are integrated into CloudLab, an open cloud platform, for effective hands-on learning. Through a user study, we demonstrate that students have a better understanding of SDN security after participating in these well-designed CloudLab-based security labs, and they also acquired strong research interests in SDN security.more » « less