skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yue, Lun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many-body effects play an important role in enhancing and modifying optical absorption and other excited-state properties of solids in the perturbative regime, but their role in high harmonic generation (HHG) and other nonlinear response beyond the perturbative regime is not well-understood. We develop here an ab initio many-body method to study nonperturbative HHG based on the real-time propagation of the non-equilibrium Green’s function with the GW self energy. We calculate the HHG of monolayer MoS2and obtain good agreement with experiment, including the reproduction of characteristic patterns of monotonic and nonmonotonic harmonic yield in the parallel and perpendicular responses, respectively. Here, we show that many-body effects are especially important to accurately reproduce the spectral features in the perpendicular response, which reflect a complex interplay of electron-hole interactions (or exciton effects) in tandem with the many-body renormalization and Berry curvature of the independent quasiparticle bandstructure. 
    more » « less