High harmonic generation (HHG) in solids has been identified as a promising mechanism for light source generation and for spectroscopy of materials. HHG from bulk solids, however, often suffers from nonlinear propagation effects, resulting in a loss of spectral coherence and the skewing of spectroscopic measurements. Here, we study HHG in epitaxial ZnO thin films grown on Al2O3substrates using atomic layer deposition. We find that the HHG emission consists of narrow spectral peaks, in contrast to those seen in bulk, and that the dependence of the harmonic yield on the film thickness differs for above-gap and below-gap harmonics, which can be understood from analytical models based on the linear and nonlinear response of the medium. The measured harmonic spectra depend qualitatively on the preparation of the films, with as-grown films generating even harmonic orders, which are absent in annealed films. The results are interpreted using transmission electron microscopy measurements, which indicate different morphologies for the as-grown and annealed films. 
                        more » 
                        « less   
                    
                            
                            Many-body enhancement of high-harmonic generation in monolayer MoS2
                        
                    
    
            Abstract Many-body effects play an important role in enhancing and modifying optical absorption and other excited-state properties of solids in the perturbative regime, but their role in high harmonic generation (HHG) and other nonlinear response beyond the perturbative regime is not well-understood. We develop here an ab initio many-body method to study nonperturbative HHG based on the real-time propagation of the non-equilibrium Green’s function with the GW self energy. We calculate the HHG of monolayer MoS2and obtain good agreement with experiment, including the reproduction of characteristic patterns of monotonic and nonmonotonic harmonic yield in the parallel and perpendicular responses, respectively. Here, we show that many-body effects are especially important to accurately reproduce the spectral features in the perpendicular response, which reflect a complex interplay of electron-hole interactions (or exciton effects) in tandem with the many-body renormalization and Berry curvature of the independent quasiparticle bandstructure. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10526268
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High harmonic generation (HHG) in atomic gases is generally assumed to originate from photoelectrons that are not perturbed by neighboring particles. In this paper, we study theoretically and experimentally the regime where this approximation breaks down. At high laser intensities, we experimentally find that producing soft x-rays beyond this single-collision condition leads to a strong reduction of the coherent HHG response and appearance of incoherent radiation. We generalize our results to phase-matched HHG with mid-infrared drivers, and determine that aminimum pulse energyis needed to simultaneously phase match the HHG process and keep photoelectrons unperturbed by surrounding particles. Therefore, while previous research showed that HHG efficiency is independent of the driving pulse energy if other experimental parameters are scaled accordingly, we find that this rule no longer applies for high photon energies. Our study thus provides important guidelines for the laser parameters needed for the generation of high flux soft x-ray high harmonics.more » « less
- 
            Abstract High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limitations of gases and bulk solids. Here, we demonstrate a nanoscale platform for highly efficient HHG driven by intense mid-infrared laser pulses: an ultra-thin resonant gallium phosphide (GaP) metasurface. The wide bandgap and the lack of inversion symmetry of the GaP crystal enable the generation of even and odd harmonics covering a wide range of photon energies between 1.3 and 3 eV with minimal reabsorption. The resonantly enhanced conversion efficiency facilitates single-shot measurements that avoid material damage and pave the way to study the controllable transition between perturbative and non-perturbative regimes of light-matter interactions at the nanoscale.more » « less
- 
            Vigorous efforts to harness the topological properties of light have enabled a multitude of novel applications. Translating the applications of structured light to higher spatial and temporal resolutions mandates their controlled generation, manipulation, and thorough characterization in the short-wavelength regime. Here, we resort to high-order harmonic generation (HHG) in a noble gas to upconvert near-infrared (IR) vector, vortex, and vector-vortex driving beams that are tailored, respectively, in their spin angular momentum (SAM), orbital angular momentum (OAM), and simultaneously in their SAM and OAM. We show that HHG enables the controlled generation of extreme-ultraviolet (EUV) vector beams exhibiting various spatially dependent polarization distributions, or EUV vortex beams with a highly twisted phase. Moreover, we demonstrate the generation of EUV vector-vortex beams (VVB) bearing combined characteristics of vector and vortex beams. We rely on EUV wavefront sensing to unambiguously affirm the topological charge scaling of the HHG beams with the harmonic order. Interestingly, our work shows that HHG allows for a synchronous controlled manipulation of SAM and OAM. These EUV structured beams bring in the promising scenario of their applications at nanometric spatial and sub-femtosecond temporal resolutions using a table-top harmonic source.more » « less
- 
            Abstract Studies of laser-driven strong field processes subjected to a (quasi-)static field have been mainly confined to theory. Here we provide an experimental realization by introducing a bichromatic approach for high harmonic generation (HHG) in a dielectric that combines an intense 70 femtosecond duration mid-infrared driving field with a weak 2 picosecond period terahertz (THz) dressing field. We address the physics underlying the THz field induced static symmetry breaking and its consequences on the efficient production/suppression of even-/odd-order harmonics, and demonstrate the ability to probe the HHG dynamics via the modulation of the harmonic distribution. Moreover, we report a delay-dependent even-order harmonic frequency shift that is proportional to the time derivative of the THz field. This suggests a limitation of the static symmetry breaking interpretation and implies that the resultant attosecond bursts are aperiodic, thus providing a frequency domain probe of attosecond transients while opening opportunities in precise attosecond pulse shaping.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
