skip to main content

Search for: All records

Creators/Authors contains: "Yue, Wen-Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnonics, which employs spin-waves to transmit and process information, is a promising venue for low-power data processing. One of the major challenges is the local control of the spin-wave propagation path. Here, we introduce the concept of writable magnonics by taking advantage of the highly flexible reconfigurability and rewritability of artificial spin ice systems. Using micromagnetic simulations, we show that globally switchable spin-wave propagation and locally writable spin-wave nanochannels can be realized in a ferromagnetic thin film underlying an artificial pinwheel spin ice. The rewritable magnonics enabled by reconfigurable spin wave nanochannels provides a unique setting to design programmable magnonic circuits and logic devices for ultra-low power applications.