skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tailoring magnetization reversal of a single-domain bar nanomagnet via its end geometry
Nanoscale single-domain bar magnets are building blocks for a variety of fundamental and applied mesoscopic magnetic systems, such as artificial spin ices, magnetic shape-morphing microbots, and magnetic majority logic gates. The magnetization reversal switching field of the bar nanomagnets is a crucial parameter that determines the physical properties and functionalities of their constituted artificial systems. Previous methods on tuning the magnetization reversal switching field of a bar nanomagnet usually relied on modifying its aspect ratio, such as its length, width, and/or thickness. Here, we show that the switching field of a bar nanomagnet saturates when extending its length beyond a certain value, preventing further tailoring of the magnetization reversal via aspect ratios. We showcase a highly tunable switching field of a bar nanomagnet by tailoring its end geometry without altering its size. This provides an easy method to control the magnetization reversal of a single-domain bar nanomagnet. It would enable new research and/or applications, such as designing artificial spin ices with additional tuning parameters, engineering magnetic microbots with more flexibility, and developing magnetic quantum-dot cellular automata systems for low power computing.  more » « less
Award ID(s):
1901843
PAR ID:
10597536
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
11
Issue:
4
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effects of magnetostatic coupling on switching dynamics are investigated for assemblies of patterned disc-shaped magnetic elements using mumax3 micromagnetic simulations. The arrangements of coupled dots were designed using information about the switching fields and reversal dynamics of isolated dots, as well as the magnitude of the magnetic stray fields they generate. The magnetization dynamics for individual dots was examined during a reversal cascade down a linear chain of dots. The magnetization angle fluctuated much more when neighboring dots have opposite magnetization directions, consistent with a lower energy barrier for reversal. The data were analyzed to differentiate thermal and interaction field effects. While many systems of interacting nanomagnets have been analyzed in terms of empirical models, the dynamical energy barrier approach offers a methodology with a more detailed and physically intuitive way to study both simple systems like the chain and more complex assemblies such as artificial spin ice. 
    more » « less
  2. Abstract In Part I of this topical review, we discussed dynamical phenomena in nanomagnets, focusing primarily on magnetization reversal with an eye to digital applications. In this part, we address mostly wave-like phenomena in nanomagnets, with emphasis on spin waves in myriad nanomagnetic systems and methods of controlling magnetization dynamics in nanomagnet arrays which may have analog applications. We conclude with a discussion of some interesting spintronic phenomena that undergird the rich physics exhibited by nanomagnet assemblies. 
    more » « less
  3. The topological Hall effect (THE), a quantum phenomenon arising from the emergent magnetic field generated by a topological spin texture, is a key method for detecting non-coplanar spin structures like skyrmions in magnetic materials. Here, we investigate a bilayer structure of Pt and the conducting ferrimagnet NiCo2O4 (NCO) of perpendicular magnetic anisotropy and demonstrate a giant THE across a temperature range of 2–350 K. The absence of THE in a single-layer Pt and NCO, as well as in Pt/Cu/NCO, suggests its interfacial origin. The maximum THE occurring just before the NCO coercive field indicates its connection to magnetic nucleation centers, which are topologically equivalent to skyrmions. The large normalized THE, based on the emergent-field model, points to a high population density of small magnetic nucleation centers. This aligns with the seemingly unresolvable domain structures by the employed techniques during magnetization reversal, even though clear domain structures are detected after zero-field cooling. These results establish heavy metal/NCO as a promising system for exploring topological spin structures. 
    more » « less
  4. Vertically inhomogeneous single layer ferrimagnetic films have emerged as exciting building blocks of potential next generation spintronic devices, owing to the observations of single layer switching driven by bulk spin–orbit torques resulting from broken inversion symmetry. However, little work has been performed to understand the role composition gradients play in determining the bulk and local magnetic properties of these films, as well as how changes introduced through composition gradients influence the switching behavior. We utilize atomistic spin simulations to explore how the local magnetization varies in CoGd alloys, both due to the decreased coordination number at surfaces and due to vertical inhomogeneities, and how this influences the switching fields in these films. While compositional modulation varies the local compensation point through the film thickness, it has no significant effect on the net compensation temperature of the alloy if the average composition stays the same, even with large variations. However, even minor variations in composition can drastically reduce the out-of-plane coercivity or even preclude perpendicular anisotropy entirely. Furthermore, the direction of the gradient determines the surface on which field driven magnetization reversal initiates, which can have design implications for future devices. This provides new insights into the role that composition gradients in ferrimagnetics play in magnetization reversal. 
    more » « less
  5. Switching of magnetization by spin–orbit torque in the (Ga,Mn)(As,P) film was studied with currents along ⟨100⟩ crystal directions and an in-plane magnetic field bias. This geometry allowed us to identify the presence of two independent spin–orbit-induced magnetic fields: the Rashba field and the Dresselhaus field. Specifically, we observe that when the in-plane bias field is along the current (I[Formula: see text]H bias ), switching is dominated by the Rashba field, while the Dresselhaus field dominates magnetization reversal when the bias field is perpendicular to the current (I ⊥ H bias ). In our experiments, the magnitudes of the Rashba and Dresselhaus fields were determined to be 2.0 and 7.5 Oe, respectively, at a current density of 8.0 × 10 5 A/cm 2 . 
    more » « less