- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Yun, Huitaek (2)
-
Chun, Heebum (1)
-
Han, Changheon (1)
-
Jun, Martin BG (1)
-
Jun, Martin_B_G (1)
-
Kim, Eunseob (1)
-
Lee, ChaBum (1)
-
Lee, Jiho (1)
-
Mun, Daeseong (1)
-
Zhou, Fengfeng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In smart manufacturing, semiconductors play an indispensable role in collecting, processing, and analyzing data, ultimately enabling more agile and productive operations. Given the foundational importance of wafers, the purity of a wafer is essential to maintain the integrity of the overall semiconductor fabrication. This study proposes a novel automated visual inspection (AVI) framework for scrutinizing semiconductor wafers from scratch, capable of identifying defective wafers and pinpointing the location of defects through autonomous data annotation. Initially, this proposed methodology leveraged a texture analysis method known as gray-level co-occurrence matrix (GLCM) that categorized wafer images—captured via a stroboscopic imaging system—into distinct scenarios for high- and low-resolution wafer images. GLCM approaches further allowed for a complete separation of low-resolution wafer images into defective and normal wafer images, as well as the extraction of defect images from defective low-resolution wafer images, which were used for training a convolutional neural network (CNN) model. Consequently, the CNN model excelled in localizing defects on defective low-resolution wafer images, achieving an F1 score—the harmonic mean of precision and recall metrics—exceeding 90.1%. In high-resolution wafer images, a background subtraction technique represented defects as clusters of white points. The quantity of these white points determined the defectiveness and pinpointed locations of defects on high-resolution wafer images. Lastly, the CNN implementation further enhanced performance, robustness, and consistency irrespective of variations in the ratio of white point clusters. This technique demonstrated accuracy in localizing defects on high-resolution wafer images, yielding an F1 score greater than 99.3%.more » « less
-
Kim, Eunseob; Mun, Daeseong; Jun, Martin_B_G; Yun, Huitaek (, International Journal of Precision Engineering and Manufacturing)Abstract This study introduces a non-invasive approach to monitor operation and productivity of a legacy pipe bending machine in real-time based on a lightweight convolutional neural network (CNN) model and internal sound as input data. Various sensors were deployed to determine the optimal sensor type and placement, and labels for training and testing the CNN model were generated through the meticulous collection of sound data in conjunction with webcam videos. The CNN model, which was optimized through hyperparameter tuning via grid search and utilized feature extraction using Log-Mel spectrogram, demonstrated notable prediction accuracies in the test. However, when applied in a real-world manufacturing scenario, the model encountered a significant number of errors in predicting productivity. To navigate through this challenge and enhance the predictive accuracy of the system, a buffer algorithm using the inferences of CNN models was proposed. This algorithm employs a queuing method for continuous sound monitoring securing robust predictions, refines the interpretation of the CNN model inferences, and enhances prediction outcomes in actual implementation where accuracy of monitoring productivity information is crucial. The proposed lightweight CNN model alongside the buffer algorithm was successfully deployed on an edge computer, enabling real-time remote monitoring.more » « less
An official website of the United States government
