- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Dalcanton, Julianne J. (3)
-
Fung, Justin T. (3)
-
Gilbert, Karoline M. (3)
-
Guhathakurta, Puragra (3)
-
Seth, Anil (3)
-
Tangirala, Pujita (3)
-
Williams, Benjamin F. (3)
-
Yusufali, Ibrahim (3)
-
Durbin, Meredith J. (2)
-
Quirk, Amanda C. N. (2)
-
Tollerud, Erik (2)
-
Wojno, Jennifer (2)
-
Chemin, Laurent (1)
-
Patel, Ekta (1)
-
Quirk, Amanda C. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Triangulum Extended (TREX) Survey: The Stellar Disk Dynamics of M33 as a Function of Stellar AgeQuirk, Amanda C. N. ; Guhathakurta, Puragra ; Gilbert, Karoline M. ; Chemin, Laurent ; Dalcanton, Julianne J. ; Williams, Benjamin F. ; Seth, Anil ; Patel, Ekta ; Fung, Justin T. ; Tangirala, Pujita ; et al ( , The Astronomical Journal)
Abstract Triangulum (M33) is a low-mass, relatively undisturbed spiral galaxy that offers a new regime in which to test models of dynamical heating. In spite of its proximity, M33's dynamical heating history has not yet been well-constrained. In this work, we present the TREX Survey, the largest stellar spectroscopic survey across the disk of M33. We present the stellar disk kinematics as a function of age to study the past and ongoing dynamical heating of M33. We measure line-of-sight velocities for ∼4500 disk stars. Using a subset, we divide the stars into broad age bins using Hubble Space Telescope and Canada–France–Hawaii Telescope photometric catalogs: massive main-sequence stars and helium-burning stars (∼80 Myr), intermediate-mass asymptotic branch stars (∼1 Gyr), and low-mass red giant branch stars (∼4 Gyr). We compare the stellar disk dynamics to that of the gas using existing H
i , CO, and Hα kinematics. We find that the disk of M33 has relatively low-velocity dispersion (∼16 km s−1), and unlike in the Milky Way and Andromeda galaxies, there is no strong trend in velocity dispersion as a function of stellar age. The youngest disk stars are as dynamically hot as the oldest disk stars and are dynamically hotter than predicted by most M33-like low-mass simulated analogs in Illustris. The velocity dispersion of the young stars is highly structured, with the large velocity dispersion fairly localized. The cause of this high-velocity dispersion is not evident from the observations and simulated analogs presented here. -
Gilbert, Karoline M. ; Quirk, Amanda C. N. ; Guhathakurta, Puragra ; Tollerud, Erik ; Wojno, Jennifer ; Dalcanton, Julianne J. ; Durbin, Meredith J. ; Seth, Anil ; Williams, Benjamin F. ; Fung, Justin T. ; et al ( , The Astrophysical Journal)
Abstract We present initial results from a large spectroscopic survey of stars throughout M33's stellar disk. We analyze a sample of 1667 red giant branch (RGB) stars extending to projected distances of ∼11 kpc from M33's center (∼18 kpc, or ∼10 scale lengths, in the plane of the disk). The line-of-sight velocities of RGB stars show the presence of two kinematical components. One component is consistent with rotation in the plane of M33's H
i disk and has a velocity dispersion (∼19 km s−1), consistent with that observed in a comparison sample of younger stars, while the second component has a significantly higher velocity dispersion. A two-component fit to the RGB velocity distribution finds that the high-dispersion component has a velocity dispersion of km s−1and rotates very slowly in the plane of the disk (consistent with no rotation at the <1.5σ level), which favors interpreting it as a stellar halo rather than a thick disk population. A spatial analysis indicates that the fraction of RGB stars in the high-velocity-dispersion component decreases with increasing radius over the range covered by the spectroscopic sample. Our spectroscopic sample establishes that a significant high-velocity-dispersion component is present in M33's RGB population from near M33's center to at least the radius where M33's Hi disk begins to warp at 30′ (∼7.5 kpc) in the plane of the disk. This is the first detection and spatial characterization of a kinematically hot stellar component throughout M33's inner regions.