skip to main content

Search for: All records

Creators/Authors contains: "Zahedy, Fakhri S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    This paper presents a systematic study of the photoionization and thermodynamic properties of the cool circumgalactic medium (CGM) as traced by rest-frame ultraviolet absorption lines around 26 galaxies at redshift z ≲ 1. The study utilizes both high-quality far-ultraviolet and optical spectra of background QSOs and deep galaxy redshift surveys to characterize the gas density, temperature, and pressure of individual absorbing components and to resolve their internal non-thermal motions. The derived gas density spans more than three decades, from $\log (n_{\rm H}/{{\rm cm^{-3}}}) \approx -4$ to −1, while the temperature of the gas is confined in a narrow range of log (T/K) ≈ 4.3 ± 0.3. In addition, a weak anticorrelation between gas density and temperature is observed, consistent with the expectation of the gas being in photoionization equilibrium. Furthermore, decomposing the observed line widths into thermal and non-thermal contributions reveals that more than 30 per cent of the components at z ≲ 1 exhibit line widths driven by non-thermal motions, in comparison to <20 per cent found at z ≈ 2–3. Attributing the observed non-thermal line widths to intra-clump turbulence, we find that massive quenched galaxies on average exhibit higher non-thermal broadening/turbulent energy in their CGM compared to star-forming galaxies at z ≲ 1. Finally,more »strong absorption features from multiple ions covering a wide range of ionization energy (e.g. from Mg ii to O iv) can be present simultaneously in a single absorption system with kinematically aligned component structure, but the inferred pressure in different phases may differ by a factor of ≈10.

    « less
  2. ABSTRACT This paper presents a survey of Mg ii absorbing gas in the vicinity of 380 random galaxies, using 156 background quasi-stellar objects (QSOs) as absorption-line probes. The sample comprises 211 isolated (73 quiescent and 138 star-forming galaxies) and 43 non-isolated galaxies with sensitive constraints for both Mg ii absorption and H α emission. The projected distances span a range from d = 9 to 497 kpc, redshifts of the galaxies range from z = 0.10 to 0.48, and rest-frame absolute B-band magnitudes range from MB = −16.7 to −22.8. Our analysis shows that the rest-frame equivalent width of Mg ii, Wr(2796), depends on halo radius (Rh), B-band luminosity(LB), and stellar mass (Mstar) of the host galaxies, and declines steeply with increasing d for isolated, star-forming galaxies. At the same time, Wr(2796) exhibits no clear trend for either isolated, quiescent galaxies or non-isolated galaxies. In addition, the covering fraction of Mg ii absorbing gas 〈κ〉 is high with 〈κ〉 ≳ 60 per cent at <40 kpc for isolated galaxies and declines rapidly to 〈κ〉 ≈ 0 at d ≳ 100 kpc. Within the gaseous radius, the incidence of Mg ii gas depends sensitively on both Mstar and the specific star formation rate inferred from H α. Different from what is known for massive quiescent haloes,more »the observed velocity dispersion of Mg ii absorbing gas around star-forming galaxies is consistent with expectations from virial motion, which constrains individual clump mass to $m_{\rm cl} \gtrsim 10^5 \, \rm M_\odot$ and cool gas accretion rate of $\sim 0.7\!-\!2 \, \mathrm{ M}_\odot \, \rm yr^{-1}$. Finally, we find no strong azimuthal dependence of Mg ii absorption for either star-forming or quiescent galaxies. Our results demonstrate that multiple parameters affect the properties of gaseous haloes around galaxies and highlight the need of a homogeneous, absorption-blind sample for establishing a holistic description of chemically enriched gas in the circumgalactic space.« less
  3. ABSTRACT We present a detailed study of two partial Lyman limit systems (pLLSs) of neutral hydrogen column density $N_\mathrm{H\, I}\approx (1-3)\times 10^{16}\, \mathrm{cm}^{-2}$ discovered at $z$ = 0.5 in the Cosmic Ultraviolet Baryon Survey (CUBS). Available far-ultraviolet spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and optical echelle spectra from MIKE on the Magellan Telescopes enable a comprehensive ionization analysis of diffuse circumgalactic gas based on resolved kinematics and abundance ratios of atomic species spanning five different ionization stages. These data provide unambiguous evidence of kinematically aligned multiphase gas that masquerades as a single-phase structure and can only be resolved by simultaneous accounting of the full range of observed ionic species. Both systems are resolved into multiple components with inferred α-element abundance varying from [α/H] ≈−0.8 to near solar and densities spanning over two decades from log nH/cm−3 ≈ −2.2 to <−4.3. Available deep galaxy survey data from the CUBS program taken with VLT/MUSE, Magellan/LDSS3-C and Magellan/IMACS reveal that the $z$ = 0.47 system is located 55 kpc from a star-forming galaxy with prominent Balmer absorption of stellar mass ${{M_{\rm star}}}\approx 2\times 10^{10}\, {{M_{\odot}}}$, while the $z$ = 0.54 system resides in an overdense environment of 11 galaxies within 750 kpc in projected distance, withmore »the most massive being a luminous red galaxy of ${{M_{\rm star}}}\approx 2\times 10^{11}\, {{M_{\odot}}}$ at 375 kpc. The study of these two pLLSs adds to an emerging picture of the complex, multiphase circumgalactic gas that varies in chemical abundances and density on small spatial scales in diverse galaxy environments. The inhomogeneous nature of metal enrichment and density revealed in observations must be taken into account in theoretical models of diffuse halo gas.« less
  4. Abstract

    We present the discovery of neutral gas detected in both damped Lyαabsorption (DLA) and Hi21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hibridge connecting two interacting dwarf galaxies (log (Mstar/M) = 8.5 ± 0.2) that host az= 0.026 DLA with log[N(Hi)/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (zQSO= 1.35). At impact parameters ofd= 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L*within at least Δv= ±300 km s−1andd≈ 350 kpc. The Hi21 cm emission is spatially coincident with the DLA at the 2σ–3σlevel per spectral channel over several adjacent beams. However, Hi21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioTs/fc> 1880 K). Observations with VLT-MUSE demonstrate that theα-element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarfmore »interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments.

    « less
  5. ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicitymore »constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium.« less
  6. ABSTRACT We compare a sample of five high-resolution, high S/N  Ly α forest spectra of bright 6 < z < ∼6.5 QSOs aimed at spectrally resolving the last remaining transmission spikes at z > 5 with those obtained from mock absorption spectra from the Sherwoodand Sherwood–Relics simulation suites of hydrodynamical simulations of the intergalactic medium (IGM). We use a profile-fitting procedure for the inverted transmitted flux, 1 − F, similar to the widely used Voigt profile fitting of the transmitted flux F at lower redshifts, to characterize the transmission spikes that probe predominately underdense regions of the IGM. We are able to reproduce the width and height distributions of the transmission spikes, both with optically thin simulations of the post-reionization Universe using a homogeneous UV background and full radiative transfer simulations of a late reionization model. We find that the width of the fitted components of the simulated transmission spikes is very sensitive to the instantaneous temperature of the reionized IGM. The internal structures of the spikes are more prominent in low temperature models of the IGM. The width distribution of the observed transmission spikes, which require high spectral resolution (≤ 8  km s−1) to be resolved, is reproduced for optically thinmore »simulations with a temperature at mean density of T0 = (11 000 ± 1600, 10 500 ± 2100, 12 000 ± 2200) K at z = (5.4, 5.6, 5.8). This is weakly dependent on the slope of the temperature-density relation, which is favoured to be moderately steeper than isothermal. In the inhomogeneous, late reionization, full radiative transfer simulations where islands of neutral hydrogen persist to z ∼ 5.3, the width distribution of the observed transmission spikes is consistent with the range of T0 caused by spatial fluctuations in the temperature–density relation.« less