Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2025
-
The phase transition from subcritical to supercritical conditions, referred to as transcritical behavior, significantly impacts the evaporation and fuel–air mixing in high-pressure liquid-fuel propulsion systems. Transcritical behavior is characterized as a transition from classical two-phase evaporation to a single-phase gas-like diffusion regime as surface tension and latent heat of vaporization reduce. However, the interfacial behavior represented by the surface tension coefficient and evaporation rate during this transition which are crucial inputs for Computational Fluid Dynamics (CFD) simulations of practical transcritical fuel spray is still missing. This study aims at developing new evaporation rate and surface tension models for transcritical n-dodecane droplets using molecular dynamics (MD) simulations irrespective of the droplet size. As MD simulations are primarily limited to the nanoscale, the new models can bridge the gap between MD and continuum simulations and enable the direct application of these findings to microscopic droplets. A new characteristic timescale, i.e., “undroplet time,” is defined which marks the transition from classical two-phase evaporation to single-phase gas-like diffusion behavior. The undroplet time indicates the onset of droplet core disintegration and penetration of nitrogen molecules into the droplet, which occurs after the vanishment of the surface tension. By normalizing the time with respect to the undroplet time, the rate of surface tension decay, evaporation rate, and the rate of droplet mass depletion become independent of the droplet size. Calculation of pairwise correlation coefficients for the entire MD results shows that both surface tension coefficient and evaporation rate are strongly correlated with the background temperature, while pressure and droplet size play a less significant role past the critical point. Therefore, new models for surface tension coefficient and evaporation rate spanning from sub- to supercritical conditions are developed as a function of background pressure and temperature, which can be used in continuum simulations. The identified phase change behavior based on the undroplet time shows a good agreement with the phase change regime maps obtained using microscale experiments and nanoscale MD predictions.more » « less
-
Abstract Despite being a pillar of high‐performance materials in industry, manufacturing carbon fiber composites with simultaneously enhanced multifunctionality and structural properties has remained elusive due to the lack of practical bottom‐up approaches with control over nanoscale interactions. Guided by the droplet's internal currents and amphiphilicity of nanomaterials, herein, a programmable spray coating is introduced for the deposition of multiple nanomaterials with tailorable patterns in composite. It is shown that such patterns regulate the formation of interfaces, damage containment, and electrical‐thermal conductivity of the composites, which is absent in conventional manufacturing that primarily rely on incorporating nanomaterials to achieve specific functionalities. Molecular dynamics simulations show that increasing the hydrophilicity of the hybrid nanomaterials, which is synchronous with shifting patterns from disk to ring, improves the interactions between the carbon surfaces and epoxy at the interfaces,manifested in enhanced interlaminar and flexural performance. Transitioning from ring to disk creates a larger interconnected network leading to improved thermal and electrical properties without penalty in mechanical properties. This novel approach introduces a new design , where the mechanical and multifunctional performance is controlled by the shape of the deposited patterns, thus eliminating the trade‐off between properties that are considered paradoxical in today's manufacturing of hierarchical composites.
-
Abstract Achieving desired performance from self‐assembly of nanoparticles (NPs) is challenging due to the stochastic nature of interactions among the constituent building blocks. Self‐assembly of nano‐colloids through evaporation of particle‐laden droplets can be exploited to fabricate tailored nanostructures that add functionality and engineer the properties of manufactured components. The particle–particle and particle–solvent interactions, and delicate force balance among them are the main factors that define the pattern of the final 3D nanostructure. Here, a nanoparticle‐agnostic approach that allows the fabrication of nanostructures with precisely engineered patterns is introduced. Evaporative droplets of aqueous suspensions of pristine Carbon Nanotubes, Graphene Nanoplatelets, and Boron Nitride Nanotubes representing NPs of different elemental compositions, sizes, and shapes are investigated. Cellulose nanocrystals (CNCs) are used as a platform to make hybrid systems of CNC‐NP and utilize the repulsive‐attractive‐directional interactions in these multimaterial systems to enforce the desired final pattern between ring and disk. It is shown that irrespective of the type of NPs, the amphiphilicity of the hybrid system dictates the formation of deposited patterns. Finally, the effect of self‐assembled patterns on the functionality of multi‐material systems is demonstrated. The proposed method creates new capabilities in the precisely controlled nanostructures and facilitates smart self‐assembly systems.
-
Abstract Dispersing carbon nanomaterials in solvents is effective in transferring their significant mechanical and functional properties to polymers and nanocomposites. However, poor dispersion of carbon nanomaterials impedes exploiting their full potential in nanocomposites. Cellulose nanocrystals (CNCs) are promising for dispersing and stabilizing pristine carbon nanotubes (pCNTs) and graphene nanoplatelets (pGnP) in protic media without functionalization. Here, the underlying mechanisms at the molecular level are investigated between CNC and pCNT/pGnP that stabilize their dispersion in polar solvents. Based on the spectroscopy and microscopy characterization of CNCpCNT/pGnP and density functional theory (DFT) calculations, an additional intermolecular mechanism is proposed between CNC and pCNT/pGnP that forms carbonoxygen covalent bonds between hydroxyl end groups of CNCs and the defected sites of pCNTs/pGnPs preventing re‐agglomeration in polar solvents. This work's findings indicate that the CNC‐assisted process enables new capabilities in harnessing nanostructures at the molecular level and tailoring the performance of nanocomposites at higher length scales.