skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multifunctionality through Embedding Patterned Nanostructures in High‐Performance Composites
Abstract Despite being a pillar of high‐performance materials in industry, manufacturing carbon fiber composites with simultaneously enhanced multifunctionality and structural properties has remained elusive due to the lack of practical bottom‐up approaches with control over nanoscale interactions. Guided by the droplet's internal currents and amphiphilicity of nanomaterials, herein, a programmable spray coating is introduced for the deposition of multiple nanomaterials with tailorable patterns in composite.  It is shown that such patterns regulate the formation of interfaces, damage containment, and electrical‐thermal conductivity of the composites, which is absent in conventional manufacturing that primarily rely on incorporating nanomaterials to achieve specific functionalities. Molecular dynamics simulations show that increasing the hydrophilicity of the hybrid nanomaterials, which is synchronous with shifting patterns from disk to ring, improves the interactions between the carbon surfaces and epoxy at the interfaces,manifested in enhanced interlaminar and flexural performance. Transitioning from ring to disk creates a larger interconnected network  leading to improved thermal and electrical properties without penalty in mechanical properties. This novel approach introduces a new design , where the mechanical and multifunctional performance is controlled by the shape of the deposited patterns, thus eliminating the trade‐off between properties that are considered paradoxical in today's manufacturing of hierarchical composites.  more » « less
Award ID(s):
1930277 2134465
PAR ID:
10469210
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
32
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Thermoset composites, utilized in additive manufacturing, are distinguished by their excellent thermal and mechanical properties, enabling them to maintain structural integrity even under high-temperature conditions. An accurate method for characterizing the mechanical properties is necessary to ensure the performance parameters, reliability, and safety of materials during and post-manufacturing. However, characterizing 3D-printed thermoset composites is challenging due to the anisotropy introduced by the additive manufacturing process and factors such as delamination and porosity. This also leads to difficulties in accurately characterizing composites with traditional testing methods. To address this, this paper introduces a novel method that combines a non-destructive Piezoelectric transducer-laser Doppler Vibrometer (PZT-LDV) guided wave sensing system with an optimization algorithm-enhanced wavenumber analysis technique. A series of experiments were conducted to validate the concept of measuring the mechanical properties of a 3D-printed thermoset material panel. Our method successfully determined two material properties — shear wave speed and Poisson’s ratio in multiple directions on the test panel. This study aims to establish a precise and rapid non-destructive testing method that can effectively characterize various composite materials and monitor their performance throughout the additive manufacturing process. 
    more » « less
  2. Abstract Polymer composites with salts or conductive fillers are promising for various solid‐state energy storage applications, where processability is often determined by their rheological properties. This study investigates the effect of lithium salts and conductive fillers on the rheological behavior of polylactic acid (PLA)‐based composites. We specifically examine how these additives influence complex viscosity and the interactions between the salt, fillers, and polymer. Our findings reveal that adding salt to the polymer reduces its viscosity, whereas adding conductive fillers imparts a shear‐thinning property, which is advantageous for thermal processing methods like thermal drawing, injection molding, or 3D printing. The combination of salt and conductive fillers results in multifunctional electrode‐electrolyte composites with enhanced shear‐thinning behavior and improved storage modulus. Characterizations through x‐ray diffraction, electrical measurements, and transmission electron microscopy link the electrical properties and morphology with rheological behavior. The formation of a robust filler network in these composites ensures stable viscoelastic behavior across a range of temperatures and frequencies, indicating their suitability for efficient manufacturing of polymer‐based solid‐state electrode‐electrolyte composites via thermal processing. HighlightsShear‐thinning behavior enhanced by conductive fillers.Viscosity increased with CB and CNT fillers, forming robust networks.Salt reduced viscosity but filler networks dominated flow behavior.Filler combinations led to stable viscoelastic properties across temperatures.Polymer electrolyte–electrode composites improved processability and storage modulus. 
    more » « less
  3. Carbon fiber reinforced polymer (CFRP) is one of promising lightweight materials for advanced air mobility (and electrical vehicles) due to the high strength, low density, and corrosion resistance. On the other hand, CFRP is more expensive than many lightweight alloys, difficult to join, less fire-resistant, lower conductivities in thermal and electrical energy, more sensitive in processing defects, and more difficult to inspect its structural damages. To improve the multifunctionality desired by advanced air mobility, CFRP could be modified with nanoparticles. Nanofiber z-threaded CFRP (ZT-CFRP) technology utilizes millions of long carbon nanofibers to z-directionally thread through all carbon fibers in per square-centimeters of ZT-CFRP prepreg. The ZT-CFRP enhanced the mechanical properties, thermal conductivity, and electrical conductivity. The unique 3D-multicscaled fiber-reinforced microstructure also provide additional performance such as enhanced resistance against the property degradation caused by void, enhanced flame-retardance, improved adhesive-joint (i.e., bond line) strength, and enhanced thermal infrared damage/defect evaluation resolutions. This paper will overview the ZT-CFRP performances along with the state of ZT-CFRP prepreg process development including the scaled up roll-to-roll hot-melt manufacturing process of the ZT-CFRP prepreg. Its potentially useful multifunctional attributes for advanced air mobility will also be discussed in this paper. 
    more » « less
  4. Abstract This review highlights recent progress in additive manufacturing (AM) techniques for polymer composites reinforced with nanoparticles, short fibers, and continuous fibers. It also explores the integration of functional resins and fibers to enable advanced capabilities such as shape morphing, enhanced electrical and thermal conductivity, and self-healing behavior. Building on these advances, the review examines computational design strategies that optimize material distribution and fiber orientation. Representative approaches range from density-based methods to emerging level-set topology optimization frameworks, with objectives evolving from improving mechanical performance to addressing complex multi-physics functional requirements. The review also identifies emerging opportunities, including the need for technological innovations to further improve mechanical properties and enable adaptable multifunctionality. Further advances in theoretical modeling and integrated design-printing workflows are also discussed. By synthesizing these developments, this review aims to foster interdisciplinary collaborations and accelerate innovation in AM-enabled composite materials across a wide range of applications. 
    more » « less
  5. Additively manufactured (AM) composites based on short carbon fibers possess strength and stiffness far less than their continuous fiber counterparts due to the fiber’s small aspect ratio and inadequate interfaces with the epoxy matrix. This investigation presents a route for preparing hybrid reinforcements for AM that comprise short carbon fibers and nickel-based metal-organic frameworks (Ni-MOFs). The porous MOFs furnish the fibers with tremendous surface area. Additionally, the MOFs growth process is non-destructive to the fibers and easily scalable. This investigation also demonstrates the viability of using Ni-based MOFs as a catalyst for growing multi-walled carbon nanotubes (MWCNTs) on carbon fibers. The changes to the fiber were examined via electron microscopy, X-ray scattering techniques, and Fourier-transform infrared spectroscopy (FTIR). The thermal stabilities were probed by thermogravimetric analysis (TGA). Tensile and dynamic mechanical analysis (DMA) tests were utilized to explore the effect of MOFs on the mechanical properties of 3D-printed composites. Composites with MOFs exhibited improvements in stiffness and strength by 30.2% and 19.0%, respectively. The MOFs enhanced the damping parameter by 700%. 
    more » « less