skip to main content

Search for: All records

Creators/Authors contains: "Zang, Andi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In addition to the multiple sensors to measure parameters that can be used to improve both safety and efficiency, modern vehicles also gather information about external data (e.g., traffic conditions, weather) which, if properly used, could further improve the overall trip experience. Specifically, when it comes to navigation, one source that can provide increased context awareness, especially for autonomous driving, are the High Definition (HD) maps, which have recently witnessed a tremendous growth of popularity in vehicular technology and use. As they are limited to a particular geographic area, different portions need to be downloaded (and processed) on multiple occasions throughout a given trip, along with the other data from other internal and external sources. In this paper, we provide an effective deep learning approach for the recently introduced problem of Predicting Map Data Consumption (PMDC) in the future time instants for a given trip. We propose a novel methodology that integrates multiple data sources (road network, traffic, historic trips, HD maps) and, for a given trip, enables prediction of the map data consumption. Our experimental observations demonstrate the benefits of the proposed approach over the candidate baselines.
    Free, publicly-accessible full text available June 1, 2023