skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating Heterogeneous Sources for Learned Prediction of Vehicular Data Consumption
In addition to the multiple sensors to measure parameters that can be used to improve both safety and efficiency, modern vehicles also gather information about external data (e.g., traffic conditions, weather) which, if properly used, could further improve the overall trip experience. Specifically, when it comes to navigation, one source that can provide increased context awareness, especially for autonomous driving, are the High Definition (HD) maps, which have recently witnessed a tremendous growth of popularity in vehicular technology and use. As they are limited to a particular geographic area, different portions need to be downloaded (and processed) on multiple occasions throughout a given trip, along with the other data from other internal and external sources. In this paper, we provide an effective deep learning approach for the recently introduced problem of Predicting Map Data Consumption (PMDC) in the future time instants for a given trip. We propose a novel methodology that integrates multiple data sources (road network, traffic, historic trips, HD maps) and, for a given trip, enables prediction of the map data consumption. Our experimental observations demonstrate the benefits of the proposed approach over the candidate baselines.  more » « less
Award ID(s):
2030249
PAR ID:
10403394
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
23rd IEEE International Conference on Mobile Data Management, MDM 2022
Page Range / eLocation ID:
54 to 63
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Autonomous vehicles often rely on high-definition (HD) maps to navigate around. However, lane markings (LMs) are not necessarily static objects due to wear \& tear from usage and road reconstruction \& maintenance. Therefore, the wrong matching between LMs in the HD map and sensor readings may lead to erroneous localization or even cause traffic accidents. It is imperative to keep LMs up-to-date. However, frequently recollecting data with dedicated hardware and specialists to update HD maps is not only cost-prohibitive but also unviable. Here we propose to utilize crowdsourced images from multiple vehicles at different times to help verify LMs for HD map maintenance. We obtain the LM distribution in the image space by considering the camera pose uncertainty in perspective projection. Both LMs in HD map and LMs in the image are treated as observations of LM distributions which allow us to construct posterior conditional distribution (a.k.a Bayesian belief functions) of LMs from either sources. An LM is consistent if belief functions from the map and the image satisfy statistical hypothesis testing. We further extend the Bayesian belief model into a sequential belief update using crowdsourced images. LMs with a higher probability of existence are kept in the HD map whereas those with a lower probability of existence are removed from the HD map. We verify our approach using real data. Experimental results show that our method is capable of verifying and updating LMs in the HD map. 
    more » « less
  2. With the increasing availability of GPS trajectory data, map construction algorithms have been developed that automatically construct road maps from this data. In order to assess the quality of such (constructed) road maps, the need for meaningful road map comparison algorithms becomes increasingly important. Indeed, different approaches for map comparison have been recently proposed; however, most of these approaches assume that the road maps are modeled as undirected embedded planar graphs. In this paper, we study map comparison algorithms for more realistic models of road maps: directed roads as well as weighted roads. In particular, we address two main questions: how close are the graphs to each other, and how close is the information presented by the graphs (i.e., traffic times, trajectories, and road type)? We propose new road network comparisons and give illustrative examples. Furthermore, our approaches do not only apply to road maps but can be used to compare other kinds of graphs as well. 
    more » « less
  3. The ability to accurately predict public transit ridership demand benefits passengers and transit agencies. Agencies will be able to reallocate buses to handle under or over-utilized bus routes, improving resource utilization, and passengers will be able to adjust and plan their schedules to avoid overcrowded buses and maintain a certain level of comfort. However, accurately predicting occupancy is a non-trivial task. Various reasons such as heterogeneity, evolving ridership patterns, exogenous events like weather, and other stochastic variables, make the task much more challenging. With the progress of big data, transit authorities now have access to real-time passenger occupancy information for their vehicles. The amount of data generated is staggering. While there is no shortage in data, it must still be cleaned, processed, augmented, and merged before any useful information can be generated. In this paper, we propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership. We use data that spans a 2-year period (2020-2022) incorporating transit, weather, traffic, and calendar data. The resulting data, which equates to 17 million observations, is used to train separate models for the trip and stop level prediction. We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN. We demonstrate that the trip level model based on Xgboost and the stop level model based on LSTM outperform the baseline statistical model across the entire transit service day. 
    more » « less
  4. Stop-and-go traffic poses significant challenges to the efficiency and safety of traffic operations, and its impacts and working mechanism have attracted much attention. Recent studies have shown that Connected and Automated Vehicles (CAVs) with carefully designed longitudinal control have the potential to dampen the stop-and-go wave based on simulated vehicle trajectories. In this study, Deep Reinforcement Learning (DRL) is adopted to control the longitudinal behavior of CAVs and real-world vehicle trajectory data is utilized to train the DRL controller. It considers a Human-Driven (HD) vehicle tailed by a CAV, which are then followed by a platoon of HD vehicles. Such an experimental design is to test how the CAV can help to dampen the stop-and-go wave generated by the lead HD vehicle and contribute to smoothing the following HD vehicles’ speed profiles. The DRL control is trained using real-world vehicle trajectories, and eventually evaluated using SUMO simulation. The results show that the DRL control decreases the speed oscillation of the CAV by 54% and 8%-28% for those following HD vehicles. Significant fuel consumption savings are also observed. Additionally, the results suggest that CAVs may act as a traffic stabilizer if they choose to behave slightly altruistically. 
    more » « less
  5. null (Ed.)
    Stop-and-go traffic poses significant challenges to the efficiency and safety of traffic operations, and its impacts and working mechanism have attracted much attention. Recent studies have shown that Connected and Automated Vehicles (CAVs) with carefully designed longitudinal control have the potential to dampen the stop-and-go wave based on simulated vehicle trajectories. In this study, Deep Reinforcement Learning (DRL) is adopted to control the longitudinal behavior of CAVs and real-world vehicle trajectory data is utilized to train the DRL controller. It considers a Human-Driven (HD) vehicle tailed by a CAV, which are then followed by a platoon of HD vehicles. Such an experimental design is to test how the CAV can help to dampen the stop-and-go wave generated by the lead HD vehicle and contribute to smoothing the following HD vehicles’ speed profiles. The DRL control is trained using realworld vehicle trajectories, and eventually evaluated using SUMO simulation. The results show that the DRL control decreases the speed oscillation of the CAV by 54% and 8%-28% for those following HD vehicles. Significant fuel consumption savings are also observed. Additionally, the results suggest that CAVs may act as a traffic stabilizer if they choose to behave slightly altruistically. 
    more » « less