skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Bohua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Endovascular sonothrombolysis has gained significant attention due to its benefits, including direct targeting of the thrombus with sonication and reduced side effects. However, the small aperture of endovascular transducers restricts the improvement of their potential clinical efficiency due to inefficient acoustic radiation. Hence, in an earlier study, we used vortex ultrasound with an endovascular ultrasound transducer to induce shear stress and enhance the clot lysis. In this study, the vortex acoustic transduction mechanism was investigated using numerical simulations and hydrophone tests. Following this characterization, we demonstrated the performance of the vortex ultrasound transducer in thrombolysis of retracted clots in in vitro tests. The test results indicated that the maximum lysis rates were 79.0% and 32.2% with the vortex ultrasound for unretracted and retracted clots, respectively. The vortex ultrasound enhanced the efficiency of the thrombolysis by approximately 49%, both for retracted and unretracted clots, compared with the typical non-vortex ultrasound technique. Therefore, the use of endovascular vortex ultrasound holds promise as a potential clinical option for the thrombolysis of retracted clots.

     
    more » « less
  2. Robotic prostheses and powered exoskeletons are novel assistive robotic devices for modern medicine. Muscle activity sensing plays an important role in controlling assistive robotics devices. Most devices measure the surface electromyography (sEMG) signal for myoelectric control. However, sEMG is an integrated signal from muscle activities. It is difficult to sense muscle movements in specific small regions, particularly at different depths. Alternatively, traditional ultrasound imaging has recently been proposed to monitor muscle activity due to its ability to directly visualize superficial and at-depth muscles. Despite their advantages, traditional ultrasound probes lack wearability. In this paper, a wearable ultrasound (US) transducer, based on lead zirconate titanate (PZT) and a polyimide substrate, was developed for a muscle activity sensing demonstration. The fabricated PZT-5A elements were arranged into a 4 × 4 array and then packaged in polydimethylsiloxane (PDMS). In vitro porcine tissue experiments were carried out by generating the muscle activities artificially, and the muscle movements were detected by the proposed wearable US transducer via muscle movement imaging. Experimental results showed that all 16 elements had very similar acoustic behaviors: the averaged central frequency, −6 dB bandwidth, and electrical impedance in water were 10.59 MHz, 37.69%, and 78.41 Ω, respectively. The in vitro study successfully demonstrated the capability of monitoring local muscle activity using the prototyped wearable transducer. The findings indicate that ultrasonic sensing may be an alternative to standardize myoelectric control for assistive robotics applications. 
    more » « less
  3. This research aims to demonstrate a novel vortex ultrasound enabled endovascular thrombolysis method designed for treating cerebral venous sinus thrombosis (CVST). This is a topic of substantial importance since current treatment modalities for CVST still fail in as many as 20% to 40% of the cases, and the incidence of CVST has increased since the outbreak of the coronavirus disease 2019 pandemic. Compared with conventional anticoagulant or thrombolytic drugs, sonothrombolysis has the potential to remarkably shorten the required treatment time owing to the direct clot targeting with acoustic waves. However, previously reported strategies for sonothrombolysis have not demonstrated clinically meaningful outcomes (e.g., recanalization within 30 min) in treating large, completely occluded veins or arteries. Here, we demonstrated a new vortex ultrasound technique for endovascular sonothrombolysis utilizing wave-matter interaction-induced shear stress to enhance the lytic rate substantially. Our in vitro experiment showed that the lytic rate was increased by at least 64.3% compared with the nonvortex endovascular ultrasound treatment. A 3.1-g, 7.5-cm-long, completely occluded in vitro 3-dimensional model of acute CVST was fully recanalized within 8 min with a record-high lytic rate of 237.5 mg/min for acute bovine clot in vitro. Furthermore, we confirmed that the vortex ultrasound causes no vessel wall damage over ex vivo canine veins. This vortex ultrasound thrombolysis technique potentially presents a new life-saving tool for severe CVST cases that cannot be efficaciously treated using existing therapies. 
    more » « less