Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. This work assesses a recently produced 21-member climate model large ensemble (LE) based on the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) version 2 (E3SM2). The ensemble spans the historical era (1850 to 2014) and 21st century (2015 to 2100), using the SSP370 pathway, allowing for an evaluation of the model's forced response. A companion 500-year preindustrial control simulation is used to initialize the ensemble and estimate drift. Characteristics of the LE are documented and compared against other recently produced ensembles using the E3SM version 1 (E3SM1) and Community Earth System Model (CESM) versions 1 and 2. Simulation drift is found to be smaller, and model agreement with observations is higher in versions 2 of E3SM and CESM versus their version 1 counterparts. Shortcomings in E3SM2 include a lack of warming from the mid to late 20th century, likely due to excessive cooling influence of anthropogenic sulfate aerosols, an issue also evident in E3SM1. Associated impacts on the water cycle and energy budgets are also identified. Considerable model dependence in the response to both aerosols and greenhouse gases is documented and E3SM2's sensitivity to variable prescribed biomass burning emissions is demonstrated. Various E3SM2 and CESM2 model benchmarks are found to be on par with the highest-performing recent generation of climate models, establishing the E3SM2 LE as an important resource for estimating climate variability and responses, though with various caveats as discussed herein. As an illustration of the usefulness of LEs in estimating the potential influence of internal variability, the observed CERES-era trend in net top-of-atmosphere flux is compared to simulated trends and found to be much larger than the forced response in all LEs, with only a few members exhibiting trends as large as observed, thus motivating further study.more » « less
-
Abstract A set of diagnostics based on simple, statistical relationships between precipitation and the thermodynamic environment in observations is implemented to assess phase 6 of the Coupled Model Intercomparison Project (CMIP6) model behavior with respect to precipitation. Observational data from the Atmospheric Radiation Measurement (ARM) permanent field observational sites are augmented with satellite observations of precipitation and temperature as an observational baseline. A robust relationship across observational datasets between column water vapor (CWV) and precipitation, in which conditionally averaged precipitation exhibits a sharp pickup at some critical CWV value, provides a useful convective onset diagnostic for climate model comparison. While a few models reproduce an appropriate precipitation pickup, most models begin their pickup at too low CWV and the increase in precipitation with increasing CWV is too weak. Convective transition statistics compiled in column relative humidity (CRH) partially compensate for model temperature biases—although imperfectly since the temperature dependence is more complex than that of column saturation. Significant errors remain in individual models and weak pickups are generally not improved. The conditional-average precipitation as a function of CRH can be decomposed into the product of the probability of raining and mean precipitation during raining times (conditional intensity). The pickup behavior is primarily dependent on the probability of raining near the transition and on the conditional intensity at higher CRH. Most models roughly capture the CRH dependence of these two factors. However, compensating biases often occur: model conditional intensity that is too low at a given CRH is compensated in part by excessive probability of precipitation.more » « less
-
The increase of computer processing speed is significantly outpacing improvements in network and storage bandwidth, leading to the big data challenge in modern science, where scientific applications can quickly generate much more data than that can be transferred and stored. As a result, big scientific data must be reduced by a few orders of magnitude while the accuracy of the reduced data needs to be guaranteed for further scientific explorations. Moreover, scientists are often interested in some specific spatial/temporal regions in their data, where higher accuracy is required. The locations of the regions requiring high accuracy can sometimes be prescribed based on application knowledge, while other times they must be estimated based on general spatial/temporal variation. In this paper, we develop a novel multilevel approach which allows users to impose region-wise compression error bounds. Our method utilizes the byproduct of a multilevel compressor to detect regions where details are rich and we provide the theoretical underpinning for region-wise error control. With spatially varying precision preservation, our approach can achieve significantly higher compression ratios than single-error bounded compression approaches and control errors in the regions of interest. We conduct the evaluations on two climate use cases – one targeting small-scale, node features and the other focusing on long, areal features. For both use cases, the locations of the features were unknown ahead of the compression. By selecting approximately 16% of the data based on multi-scale spatial variations and compressing those regions with smaller error tolerances than the rest, our approach improves the accuracy of post-analysis by approximately 2 × compared to single-error-bounded compression at the same compression ratio. Using the same error bound for the region of interest, our approach can achieve an increase of more than 50% in overall compression ratio.more » « less
-
Abstract Conditional instability and the buoyancy of plumes drive moist convection but have a variety of representations in model convective schemes. Vertical thermodynamic structure information from Atmospheric Radiation Measurement (ARM) sites and reanalysis (ERA5), satellite-derived precipitation (TRMM3b42), and diagnostics relevant for plume buoyancy are used to assess climate models. Previous work has shown that CMIP6 models represent moist convective processes more accurately than their CMIP5 counterparts. However, certain biases in convective onset remain pervasive among generations of CMIP modeling efforts. We diagnose these biases in a cohort of nine CMIP6 models with subdaily output, assessing conditional instability in profiles of equivalent potential temperature,θe, and saturation equivalent potential temperature,θes, in comparison to a plume model with different mixing assumptions. Most models capture qualitative aspects of theθesvertical structure, including a substantial decrease with height in the lower free troposphere associated with the entrainment of subsaturated air. We define a “pseudo-entrainment” diagnostic that combines subsaturation and aθesmeasure of conditional instability similar to what entrainment would produce under the small-buoyancy approximation. This captures the trade-off between largerθeslapse rates (entrainment of dry air) and small subsaturation (permits positive buoyancy despite high entrainment). This pseudo-entrainment diagnostic is also a reasonable indicator of the critical value of integrated buoyancy for precipitation onset. Models with poorθe/θesstructure (those using variants of the Tiedtke scheme) or low entrainment runs of CAM5, and models with low subsaturation, such as NASA-GISS, lie outside the observational range in this diagnostic.more » « less