skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Chuanlun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Annually reoccurring microbial populations with strong spatial and temporal variations have been identified in estuarine environments, especially in those with long residence time such as the Chesapeake Bay (CB). However, it is unclear how microbial taxa cooccurr and how the inter-taxa networks respond to the strong environmental gradients in the estuaries.

    Results

    Here, we constructed co-occurrence networks on prokaryotic microbial communities in the CB, which included seasonal samples from seven spatial stations along the salinity gradients for three consecutive years. Our results showed that spatiotemporal variations of planktonic microbiomes promoted differentiations of the characteristics and stability of prokaryotic microbial networks in the CB estuary. Prokaryotic microbial networks exhibited a clear seasonal pattern where microbes were more closely connected during warm season compared to the associations during cold season. In addition, microbial networks were more stable in the lower Bay (ocean side) than those in the upper Bay (freshwater side). Multivariate regression tree (MRT) analysis and piecewise structural equation modeling (SEM) indicated that temperature, salinity and total suspended substances along with nutrient availability, particulate carbon and Chla, affected the distribution and co-occurrence of microbial groups, such as Actinobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia. Interestingly, compared to the abundant groups (such as SAR11, Saprospiraceae and Actinomarinaceae), the rare taxa including OM60 (NOR5) clade (Gammaproteobacteria), Micrococcales (Actinobacteria), and NS11-12 marine group (Bacteroidetes) contributed greatly to the stability of microbial co-occurrence in the Bay. Modularity and cluster structures of microbial networks varied spatiotemporally, which provided valuable insights into the ‘small world’ (a group of more interconnected species), network stability, and habitat partitioning/preferences.

    Conclusion

    Our results shed light on how estuarine gradients alter the spatiotemporal variations of prokaryotic microbial networks in the estuarine ecosystem, as well as their adaptability to environmental disturbances and co-occurrence network complexity and stability.

     
    more » « less
  2. Abstract

    Ammonia-oxidizing archaea (AOA) are among the most abundant and ubiquitous microorganisms in the ocean, exerting primary control on nitrification and nitrogen oxides emission. Although united by a common physiology of chemoautotrophic growth on ammonia, a corresponding high genomic and habitat variability suggests tremendous adaptive capacity. Here, we compared 44 diverse AOA genomes, 37 from species cultivated from samples collected across diverse geographic locations and seven assembled from metagenomic sequences from the mesopelagic to hadopelagic zones of the deep ocean. Comparative analysis identified seven major marine AOA genotypic groups having gene content correlated with their distinctive biogeographies. Phosphorus and ammonia availabilities as well as hydrostatic pressure were identified as selective forces driving marine AOA genotypic and gene content variability in different oceanic regions. Notably, AOA methylphosphonate biosynthetic genes span diverse oceanic provinces, reinforcing their importance for methane production in the ocean. Together, our combined comparative physiological, genomic, and metagenomic analyses provide a comprehensive view of the biogeography of globally abundant AOA and their adaptive radiation into a vast range of marine and terrestrial habitats.

     
    more » « less