- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0004000001000000
- More
- Availability
-
32
- Author / Contributor
- Filter by Author / Creator
-
-
Zhang, Denghui (5)
-
Yuan, Zixuan (3)
-
Chen, Haifeng (2)
-
Liu, Hao (2)
-
Liu, Yanchi (2)
-
Xiong, Hui (2)
-
Xu, Zhaozhuo (2)
-
Zhao, Weijie (2)
-
Chen, Jiamin (1)
-
Fu, Yanjie (1)
-
Lin, Huawei (1)
-
Pan, Yanzhou (1)
-
Ran, Yide (1)
-
Xiong, hui (1)
-
Yi, Fei (1)
-
Yu, Xiaodong (1)
-
Zhu, Nengjun (1)
-
Zhuang, Fuzhen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
Chiruzzo, Luis (1)
-
Ritter, Alan (1)
-
Wang, Lu (1)
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 29, 2026
-
Pan, Yanzhou; Lin, Huawei; Ran, Yide; Chen, Jiamin; Yu, Xiaodong; Zhao, Weijie; Zhang, Denghui; Xu, Zhaozhuo (, Association for Computational Linguistics)Chiruzzo, Luis; Ritter, Alan; Wang, Lu (Ed.)Large Language Models (LLMs) heavily rely on high-quality training data, making data valuation crucial for optimizing model performance, especially when working within a limited budget. In this work, we aim to offer a third-party data valuation approach that benefits both data providers and model developers. We introduce a linearized future influence kernel (LinFiK), which assesses the value of individual data samples in improving LLM performance during training. We further propose ALinFiK, a learning strategy to approximate LinFiK, enabling scalable data valuation. Our comprehensive evaluations demonstrate that this approach surpasses existing baselines in effectiveness and efficiency, demonstrating significant scalability advantages as LLM parameters increase.more » « lessFree, publicly-accessible full text available April 29, 2026
-
Zhang, Denghui; Liu, Yanchi; Yuan, Zixuan; Fu, Yanjie; Chen, Haifeng; Xiong, Hui (, IEEE Transactions on Knowledge and Data Engineering)
-
Zhang, Denghui; Yuan, Zixuan; Liu, Yanchi; Liu, Hao; Zhuang, Fuzhen; Xiong, Hui; Chen, Haifeng (, Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining)null (Ed.)
-
Yuan, Zixuan; Liu, Hao; Zhang, Denghui; Yi, Fei; Zhu, Nengjun; Xiong, hui (, International ACM SiGIR Conference on Research and Development in Information Retrieval)
An official website of the United States government
