skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Haocheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    It is commonly believed that blazar jets are relativistic magnetized plasma outflows from supermassive black holes. One key question is how the jets dissipate magnetic energy to accelerate particles and drive powerful multiwavelength flares. Relativistic magnetic reconnection has been proposed as the primary plasma physical process in the blazar emission region. Recent numerical simulations have shown strong acceleration of nonthermal particles that may lead to multiwavelength flares. Nevertheless, previous works have not directly evaluatedγ-ray signatures from first-principles simulations. In this paper, we employ combined particle-in-cell and polarized radiation transfer simulations to study multiwavelength radiation and optical polarization signatures under the leptonic scenario from relativistic magnetic reconnection. We find harder-when-brighter trends in optical and Fermi-LATγ-ray bands as well as closely correlated optical andγ-ray flares. The swings in optical polarization angle are also accompanied byγ-ray flares with trivial time delays. Intriguingly, we find highly variable synchrotron self-Compton signatures due to inhomogeneous particle distributions during plasmoid mergers. This feature may result in fastγ-ray flares or orphanγ-ray flares under the leptonic scenario, complementary to the frequently considered minijet scenario. It may also imply neutrino emission with low secondary synchrotron flux under the hadronic scenario, if plasmoid mergers can accelerate protons to very highmore »energy.

    « less
  2. ABSTRACT Relativistic jets from supermassive black holes are among the most powerful and luminous astrophysical systems in Universe. We propose that the open magnetic field lines through the black hole, which drive a strongly magnetized jet, may have their polarity reversing over time scales related to the growth of the magnetorotational dynamo in the disc, resulting in dissipative structures in the jet characterized by reversing toroidal field polarities, referred to as ‘stripes’. The magnetic reconnection between the stripes dissipates the magnetic energy and powers jet acceleration. The striped jet model can explain the jet acceleration, large-scale jet emission, and blazar emission signatures consistently in a unified physical picture. Specifically, we find that the jet accelerates to the bulk Lorentz factor Γ ≳ 10 within 1-parsec distance from the central engine. The acceleration slows down but continues at larger distances, with intrinsic acceleration rate $\dot{\Gamma }/\Gamma$ between $0.0005$ and $0.005~\rm {yr^{-1}}$ at tens of parsecs, which is in very good agreement with recent radio observations. Magnetic reconnection continuously accelerates non-thermal particles over large distances from the central engine, resulting in the core-shift effect and overall flat-to-inverted synchrotron spectrum. The large-scale spectral luminosity peak νpeak is antiproportional to the location of themore »peak of the dissipation, which is set by the minimal stripe width lmin. The blazar zone is approximately at the same location. At this distance, the jet is moderately magnetized, with the comoving magnetic field strength and dissipation power consistent with typical leptonic blazar model parameters.« less
  3. ABSTRACT Relativistic jets are highly collimated plasma outflows emerging from accreting black holes. They are launched with a significant amount of magnetic energy, which can be dissipated to accelerate non-thermal particles and give rise to electromagnetic radiation at larger scales. Kink instabilities can be an efficient mechanism to trigger dissipation of jet magnetic energy. While previous works have studied the conditions required for the growth of kink instabilities in relativistic jets, the radiation signatures of these instabilities have not been investigated in detail. In this paper, we aim to self-consistently study radiation and polarization signatures from kink instabilities in relativistic jets. We combine large-scale relativistic magnetohydrodynamic (RMHD) simulations with polarized radiation transfer of a magnetized jet, which emerges from the central engine and propagates through the surrounding medium. We observe that a localized region at the central spine of the jet exhibits the strongest kink instabilities, which we identify as the jet emission region. Very interestingly, we find quasi-periodic oscillation (QPO) signatures in the light curve from the emission region. Additionally, the polarization degree appears to be anticorrelated to flares in the light curves. Our analyses show that these QPO signatures are intrinsically driven by kink instabilities, where the periodmore »of the QPOs is associated with the kink growth time-scale. The latter corresponds to weeks to months QPOs in blazars. The polarization signatures offer unique diagnostics for QPOs driven by kink instabilities.« less