skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Huijie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Extracting roads in aerial images has numerous applications in artificial intelligence and multimedia computing, including traffic pattern analysis and parking space planning. Learning deep neural networks, though very successful, demands vast amounts of high-quality annotations, of which acquisition is time-consuming and expensive. In this work, we propose a semi-supervised approach for image-based road extraction where only a small set of labeled images are available for training to address this challenge. We design a pixel-wise contrastive loss to self-supervise the network training to utilize the large corpus of unlabeled images. The key idea is to identify pairs of overlapping image regions (positive) or non-overlapping image regions (negative) and encourage the network to make similar outputs for positive pairs or dissimilar outputs for negative pairs. We also develop a negative sampling strategy to filter false negative samples during the process. An iterative procedure is introduced to apply the network over raw images to generate pseudo-labels, filter and select high-quality labels with the proposed contrastive loss, and re-train the network with the enlarged training dataset. We repeat these iterative steps until convergence. We validate the effectiveness of the proposed methods by performing extensive experiments on the public SpaceNet3 and DeepGlobe Road datasets. Results show that our proposed method achieves state-of-the-art results on public image segmentation benchmarks and significantly outperforms other semi-supervised methods.

     
    more » « less
    Free, publicly-accessible full text available July 22, 2024
  2. Detecting small objects (e.g., manhole covers, license plates, and roadside milestones) in urban images is a long-standing challenge mainly due to the scale of small object and background clutter. Although convolution neural network (CNN)-based methods have made significant progress and achieved impressive results in generic object detection, the problem of small object detection remains unsolved. To address this challenge, in this study we developed an end-to-end network architecture that has three significant characteristics compared to previous works. First, we designed a backbone network module, namely Reduced Downsampling Network (RD-Net), to extract informative feature representations with high spatial resolutions and preserve local information for small objects. Second, we introduced an Adjustable Sample Selection (ADSS) module which frees the Intersection-over-Union (IoU) threshold hyperparameters and defines positive and negative training samples based on statistical characteristics between generated anchors and ground reference bounding boxes. Third, we incorporated the generalized Intersection-over-Union (GIoU) loss for bounding box regression, which efficiently bridges the gap between distance-based optimization loss and area-based evaluation metrics. We demonstrated the effectiveness of our method by performing extensive experiments on the public Urban Element Detection (UED) dataset acquired by Mobile Mapping Systems (MMS). The Average Precision (AP) of the proposed method was 81.71%, representing an improvement of 1.2% compared with the popular detection framework Faster R-CNN. 
    more » « less
  3. null (Ed.)
    Payments for Ecosystem Services (PES) programs have been implemented in both developing and developed countries to conserve ecosystems and the vital services they provide. These programs also often seek to maintain or improve the economic wellbeing of the populations living in the corresponding (usually rural) areas. Previous studies suggest that PES policy design, presence or absence of concurrent PES programs, and a variety of socioeconomic and demographic factors can influence decisions of households to participate or not in the PES program. However, neighborhood impacts on household participation in PES have rarely been addressed. This study explores potential neighborhood effects on villagers’ enrollment in the Grain-to-Green Program (GTGP), one of the largest PES programs in the world, using data from China’s Fanjingshan National Nature Reserve. We utilize a fixed effects logistic regression model in combination with the eigenvector spatial filtering (ESF) method to explore whether neighborhood size affects household enrollment in GTGP. By comparing the results with and without ESF, we find that the ESF method can help account for spatial autocorrelation properly and reveal neighborhood impacts that are otherwise hidden, including the effects of area of forest enrolled in a concurrent PES program, gender and household size. The method can thus uncover mechanisms previously undetected due to not taking into account neighborhood impacts and thus provides an additional way to account for neighborhood impacts in PES programs and other studies. 
    more » « less