skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhang, Jiaxu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent progress in understanding Beaufort Gyre (BG) dynamics reveals an important role of ice‐ocean stress in stabilizing BG freshwater content (FWC) over seasonal to interannual timescales. But how the BG's stratification and FWC respond to surface forcing over decadal timescales has not been fully explored. Using a global ocean‐sea ice model, we partition the BG into upper, middle (halocline), and lower (thermocline) layers and perform a volume budget analysis over 1948–2017. We find that the BG's asymmetric geometry (with steep and tight isohalines over continental slopes relative to the deep basin) is key in determining the mean volume transport balance. We further find that a net Ekman suction during 1983–1995 causes the upper and middle layers to deflate isopycnally, while an enhanced Ekman pumping during 1996–2017 causes these layers to inflate both isopycnally and diapycnally, the latter via anomalous flux from the upper to the middle layer.

     
    more » « less
  2. Abstract

    The Beaufort Gyre (BG), the largest Arctic Ocean freshwater reservoir, has drastically increased its liquid freshwater content by 40% in the past two decades. If released within a short period, the excess freshwater could potentially impact the large-scale ocean circulation by freshening the upper subpolar North Atlantic. Here, we track BG-sourced freshwater using passive tracers in a global ocean sea-ice model and show that this freshwater exited the Arctic mostly through the Canadian Arctic Archipelago, rather than Fram Strait, during an historical release event in 1983–1995. The Labrador Sea is the most affected region in the subpolar North Atlantic, with a freshening of 0.2 psu on the western shelves and 0.4 psu in the Labrador Current. Given that the present BG freshwater content anomaly is twice the historical analog studied here, the impact of a future rapid release on Labrador Sea salinity could be significant, easily exceeding similar fluxes from Greenland meltwater.

     
    more » « less
  3. Abstract

    Heinrich Stadial 1 (HS1) was the major climate event at the onset of the last deglaciation associated with rapid cooling in Greenland and lagged, slow warming in Antarctica. Although it is widely believed that temperature signals were triggered in the Northern Hemisphere and propagated southward associated with the Atlantic meridional overturning circulation (AMOC), understanding how these signals were able to cross the Antarctic Circumpolar Current (ACC) barrier and further warm up Antarctica has proven particularly challenging. In this study, we explore the physical processes that lead to the Antarctic warming during HS1 in a transient isotope-enabled deglacial simulation iTRACE, in which the interpolar phasing has been faithfully reproduced. We show that the increased meridional heat transport alone, first through the ocean and then through the atmosphere, can explain the Antarctic warming during the early stage of HS1 without notable changes in the strength and position of the Southern Hemisphere midlatitude westerlies. In particular, when a reduction of the AMOC causes ocean warming to the north of the ACC, increased southward ocean heat transport by mesoscale eddies is triggered by steeper isopycnals to warm up the ocean beyond the ACC, which further decreases the sea ice concentration and leads to more absorption of insolation. The increased atmospheric heat then releases to the Antarctic primarily by a strengthening zonal wavenumber-3 (ZW3) pattern. Sensitivity experiments further suggest that a ∼4°C warming caused by this mechanism superimposed on a comparable warming driven by the background atmospheric CO2rise is able to explain the total simulated ∼8°C warming in the West Antarctica during HS1.

     
    more » « less
  4. Abstract

    Neodymium (Nd) isotopic composition (εNd) is an important tracer for water mass mixing and the reconstruction of past ocean circulation. To allow for a direct model‐data comparison, we have implemented Nd isotopes in the ocean component of the Community Earth System Model (CESM1.3). The model is able to capture the major features of the observed modern distribution of bothεNdand Nd concentrations. Our model provides a useful tool for the interpretation ofεNdreconstructions. For example, we show that in an idealized North Atlantic freshwater hosing experiment,εNdchanges in the Atlantic are documenting primarily the changes in water mass mixing and are hardly affected by the concomitant and large changes in the marine biological productivity and organic matter fluxes. However, the hosing experiment also shows that the end‐member changes due to the change of ocean circulation can influence the interpretation ofεNdin the Atlantic, depending on the location. The implementation of Nd, together with other existing tracers, such as δ18O,231Pa/230Th, δ13C, and radiocarbon in the same model, can improve our understanding of past ocean circulation significantly.

     
    more » « less