skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 15, 2026

Title: Extrapolar Cloud Feedbacks as a Driver of Arctic Amplification
Abstract The role of cloud feedbacks in Arctic amplification (AA) of anthropogenic warming remains unclear. Traditional feedback analysis diagnoses the net cloud feedback as strongly positive in the tropics but either weak or negative in the Arctic, suggesting that AA would be amplified if cloud feedbacks were suppressed. However, in cloud-locking experiments using the slab ocean version of the Energy Exascale Earth System Model (E3SM), we find that suppressing cloud feedbacks results in a substantial decrease in AA under greenhouse gas forcing. We show that the increase in AA from cloud feedbacks arises from two main mechanisms: 1) the additional energy contributed by positive cloud feedbacks in the tropics leads to increased poleward moist atmospheric heat transport (AHT) which then amplifies Arctic warming; and 2) the additional Arctic warming is amplified by positive noncloud feedbacks in the region, together making extrapolar cloud feedbacks amplify AA. We also find that cloud changes can modify the strength of noncloud feedback, but that modification has a small effect on Arctic warming. We further examine the role of cloud feedbacks in AA using a moist energy balance model, which demonstrates that interactions of cloud feedbacks with moist AHT and other positive feedbacks dominate the influence of clouds on the pattern of surface warming. However, the contribution of cloud-induced changes in noncloud feedbacks on AA is relatively minor. These results demonstrate that traditional attributions of AA, that are based on local feedback analysis, overlook key interactions between extrapolar cloud changes, poleward AHT, and noncloud feedbacks in the Arctic.  more » « less
Award ID(s):
1752796
PAR ID:
10638547
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
AMS
Date Published:
Journal Name:
Journal of Climate
Volume:
38
Issue:
16
ISSN:
0894-8755
Page Range / eLocation ID:
4045 to 4061
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meridional atmospheric heat transport (AHT) has been investigated through three broad perspectives: a dynamic perspective, linking AHT to the poleward flux of moist static energy (MSE) by atmospheric motions; an energetic perspective, linking AHT to energy input to the atmosphere by top-of-atmosphere radiation and surface heat fluxes; and a diffusive perspective, representing AHT in terms downgradient energy transport. It is shown here that the three perspectives provide complementary diagnostics of meridional AHT and its changes under greenhouse gas forcing. When combined, the energetic and diffusive perspectives offer prognostic insights: anomalous AHT is constrained to satisfy the net energetic demands of radiative forcing, radiative feedbacks, and ocean heat uptake; in turn, the meridional pattern of warming must adjust to produce those AHT changes, and does so approximately according to diffusion of anomalous MSE. The relationship between temperature and MSE exerts strong constraints on the warming pattern, favoring polar amplification. These conclusions are supported by use of a diffusive moist energy balance model (EBM) that accurately predicts zonal-mean warming and AHT changes within comprehensive general circulation models (GCMs). A dry diffusive EBM predicts similar AHT changes in order to satisfy the same energetic constraints, but does so through tropically amplified warming—at odds with the GCMs’ polar-amplified warming pattern. The results suggest that polar-amplified warming is a near-inevitable consequence of a moist, diffusive atmosphere’s response to greenhouse gas forcing. In this view, atmospheric circulations must act to satisfy net AHT as constrained by energetics. 
    more » « less
  2. Abstract The processes that contribute to the Arctic amplification of global surface warming are often described in the context of climate feedbacks. Previous studies have used a traditional feedback analysis framework to partition the regional surface warming into contributions from each feedback process. However, this partitioning can be complicated by interactions in the climate system. Here we focus instead on the physically intuitive approach of inactivating individual feedback processes during forced warming and evaluating the resulting change in the surface temperature field. We investigate this using a moist energy balance model with spatially varying feedbacks that are specified from comprehensive climate model results. We find that when warming is attributed to each feedback process by comparing how the climate would change if the process were not active, the water vapor feedback is the primary reason that the Arctic region warms more than the tropics, and the lapse rate feedback has a neutral effect on Arctic amplification by cooling the Arctic and the tropics by approximately equivalent amounts. These results are strikingly different from previous feedback analyses, which identified the lapse rate feedback as the largest contributor to Arctic amplification, with the water vapor feedback being the main opposing factor by warming the tropics more than the Arctic region. This highlights the importance of comparing different approaches of analyzing how feedbacks contribute to warming in order to build a better understanding of how feedbacks influence climate changes. 
    more » « less
  3. Abstract Sea‐ice loss and radiative feedbacks have been proposed to explain Arctic amplification (AA)—the enhanced Arctic warming under increased greenhouse gases, but their relationship is unclear. By analyzing coupled CESM1 simulations with 1%/year CO2increases, we show that without large sea‐ice loss and AA, the lapse rate, Planck, and surface albedo feedbacks are greatly reduced, while the positive water vapor feedback changes little. The positive Arctic lapse rate feedback, which results from enhanced surface warming rather than the high stability of Arctic air, and changes in atmospheric energy transport across the Arctic Circle are a result, not a cause, of AA; while the water vapor feedback also plays a minor role. Instead, AA results from enhanced winter oceanic heating associated with sea‐ice loss that is aided by a positive surface albedo feedback in summer and positive cloud feedback in winter. 
    more » « less
  4. As a step towards understanding the fundamental drivers of polar climate change, we evaluate contributions to polar warming and its seasonal and hemispheric asymmetries in Coupled Model Intercomparison Project phase 6 (CMIP6) as compared with CMIP5. CMIP6 models broadly capture the observed pattern of surface- and winter-dominated Arctic warming that has outpaced both tropical and Antarctic warming in recent decades. For both CMIP5 and CMIP6, CO 2 quadrupling experiments reveal that the lapse-rate and surface albedo feedbacks contribute most to stronger warming in the Arctic than the tropics or Antarctic. The relative strength of the polar surface albedo feedback in comparison to the lapse-rate feedback is sensitive to the choice of radiative kernel, and the albedo feedback contributes most to intermodel spread in polar warming at both poles. By separately calculating moist and dry atmospheric heat transport, we show that increased poleward moisture transport is another important driver of Arctic amplification and the largest contributor to projected Antarctic warming. Seasonal ocean heat storage and winter-amplified temperature feedbacks contribute most to the winter peak in warming in the Arctic and a weaker winter peak in the Antarctic. In comparison with CMIP5, stronger polar warming in CMIP6 results from a larger surface albedo feedback at both poles, combined with less-negative cloud feedbacks in the Arctic and increased poleward moisture transport in the Antarctic. However, normalizing by the global-mean surface warming yields a similar degree of Arctic amplification and only slightly increased Antarctic amplification in CMIP6 compared to CMIP5. 
    more » « less
  5. Abstract Traditional feedback analyses, which assume that individual climate feedback mechanisms act independently and add linearly, suggest that clouds do not contribute to Arctic amplification. However, feedback locking experiments, in which the cloud feedback is disabled, suggest that clouds, particularly outside of the Arctic, do contribute to Arctic amplification. Here, we reconcile these two perspectives by introducing a framework that quantifies the interactions between radiative feedbacks, radiative forcing, ocean heat uptake, and atmospheric heat transport. We show that including the cloud feedback in a comprehensive climate model can result in Arctic amplification because of interactions with other radiative feedbacks. The surface temperature change associated with including the cloud feedback is amplified in the Arctic by the surface-albedo, Planck, and lapse-rate feedbacks. A moist energy balance model with a locked cloud feedback exhibits similar behavior as the comprehensive climate model with a disabled cloud feedback and further indicates that the mid-latitude cloud feedback contributes to Arctic amplification via feedback interactions. Feedback locking in the moist energy balance model also suggests that the mid-latitude cloud feedback contributes substantially to the intermodel spread in Arctic amplification across comprehensive climate models. These results imply that constraining the mid-latitude cloud feedback will greatly reduce the intermodel spread in Arctic amplification. Furthermore, these results highlight a previously unrecognized non-local pathway for Arctic amplification. 
    more » « less