- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Yiran (3)
-
Zhang, Jingchi (3)
-
Li, Hai Helen (2)
-
Chen, Fan (1)
-
Deisher, Michael (1)
-
Huang, Jonathan (1)
-
Li, Hai (1)
-
Song, Linghao (1)
-
Wen, Wei (1)
-
Yang, Huanrui (1)
-
Yang, Xiaoxuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neural network models have demonstrated outstanding performance in a variety of applications, from image classification to natural language processing. However, deploying the models to hardware raises efficiency and reliability issues. From the efficiency perspective, the storage, computation, and communication cost of neural network processing is considerably large because the neural network models have a large number of parameters and operations. From the standpoint of robustness, the perturbation in hardware is unavoidable and thus the performance of neural networks can be degraded. As a result, this paper investigates effective learning and optimization approaches as well as advanced hardware designs in order to build efficient and robust neural network designs.more » « less
-
Zhang, Jingchi; Huang, Jonathan; Deisher, Michael; Li, Hai; Chen, Yiran (, 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP))Recently, deep neural networks (DNN) have been widely used in speaker recognition area. In order to achieve fast response time and high accuracy, the requirements for hardware resources increase rapidly. However, as the speaker recognition application is often implemented on mobile devices, it is necessary to maintain a low computational cost while keeping high accuracy in far-field condition. In this paper, we apply structural sparsification on time-delay neural networks (TDNN) to remove redundant structures and accelerate the execution. On our targeted hardware, our model can remove 60% of parameters and only slightly increasing equal error rate (EER) by 0.18% while our structural sparse model can achieve more than 1.5× speedup.more » « less
-
Chen, Fan; Wen, Wei; Song, Linghao; Zhang, Jingchi; Li, Hai Helen; Chen, Yiran (, The 2019 International Conference on Computer-Aided Design (ICCAD))As the model size of deep neural networks (DNNs) grows for better performance, the increase in computational cost associated with training and testing makes it extremely difficulty to deploy DNNs on end/edge devices with limited resources while also satisfying the response time requirement. To address this challenge, model compression which compresses model size and thus reduces computation cost is widely adopted in deep learning society. However, the practical impacts of hardware design are often ignored in these algorithm-level solutions, such as the increase of the random accesses to memory hierarchy and the constraints of memory capacity. On the other side, limited understanding about the computational needs at algorithm level may lead to unrealistic assumptions during the hardware designs. In this work, we will discuss this mismatch and provide how our approach addresses it through an interactive design practice across both software and hardware levels.more » « less
An official website of the United States government
