skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhang, Jipeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Age-related macular degeneration (AMD) is the principal cause of blindness in developed countries, and its prevalence will increase to 288 million people in 2040. Therefore, automated grading and prediction methods can be highly beneficial for recognizing susceptible subjects to late-AMD and enabling clinicians to start preventive actions for them. Clinically, AMD severity is quantified by Color Fundus Photographs (CFP) of the retina, and many machine-learning-based methods are proposed for grading AMD severity. However, few models were developed to predict the longitudinal progression status, i.e. predicting future late-AMD risk based on the current CFP, which is more clinically interesting. In this paper, we propose a new deep-learning-based classification model (LONGL-Net) that can simultaneously grade the current CFP and predict the longitudinal outcome, i.e. whether the subject will be in late-AMD in the future time-point. We design a new temporal-correlation-structure-guided Generative Adversarial Network model that learns the interrelations of temporal changes in CFPs in consecutive time-points and provides interpretability for the classifier's decisions by forecasting AMD symptoms in the future CFPs. We used about 30,000 CFP images from 4,628 participants in the Age-Related Eye Disease Study. Our classifier showed average 0.905 (95% CI: 0.886–0.922) AUC and 0.762 (95% CI: 0.733–0.792) accuracy on the 3-class classification problem of simultaneously grading current time-point's AMD condition and predicting late AMD progression of subjects in the future time-point. We further validated our model on the UK Biobank dataset, where our model showed average 0.905 accuracy and 0.797 sensitivity in grading 300 CFP images.

     
    more » « less