skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Jiyao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Magnetic fields play a crucial role in various astrophysical processes within the intracluster medium, including heat conduction, cosmic-ray acceleration, and the generation of synchrotron radiation. However, measuring magnetic field strength is typically challenging due to the limited availability of Faraday rotation measure sources. To address the challenge, we propose a novel method that employs Convolutional Neural Networks (CNNs) alongside synchrotron emission observations to estimate magnetic field strengths in galaxy clusters. Our CNN model is trained on either magnetohydrodynamic (MHD) turbulence simulations or MHD galaxy cluster simulations, which incorporate complex dynamics such as cluster mergers and sloshing motions. The results demonstrate that CNNs can effectively estimate magnetic field strengths with mean-squared error of approximately 0.135µG2, 0.044µG2, and 0.02µG2forβ = 100, 200, and 500 conditions, respectively. Additionally, we have confirmed that our CNN model remains robust against noise and variations in viewing angles with sufficient training, ensuring reliable performance under a wide range of observational conditions. We compare the CNN approach with the traditional magnetic field strength estimate method that assumes equipartition between cosmic-ray electron energy and magnetic field energy. In contrast to the equipartition method, this CNN approach relies on the morphological feature of synchrotron images, offering a new perspective for complementing traditional estimates and enhancing our understanding of cosmic-ray acceleration mechanisms. 
    more » « less
    Free, publicly-accessible full text available August 19, 2026