skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Junchi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Temporal reflection is a process where an optical pulse reflects off a moving boundary with different refractive indices across it. In a dispersive medium, this process creates a reflected pulse with a frequency shift that changes its speed. Such frequency shifts depend on the speed of the moving boundary. In this work, we propose and experimentally show that it is possible to probe the trajectory of the boundary by measuring the frequency shifts while changing the initial delay between the incident pulse and the boundary. We demonstrate this effect by reflecting a probe pulse off a short soliton, acting as a moving boundary that decelerates inside a photonic crystal fiber because of intrapulse Raman scattering. We deduce trajectory of the soliton from the measured spectral data for the reflected pulse. 
    more » « less
  2. We study temporal reflection of an optical pulse from the refractive-index barrier created by a short pump soliton inside a nonlinear dispersive medium such as an optical fiber. One feature is that the soliton’s speed changes continuously as its spectrum redshifts because of intrapulse Raman scattering. We use the generalized nonlinear Schrödinger equation to find the shape and spectrum of the reflected pulse. Both are affected considerably by the soliton’s trajectory. The reflected pulse can become considerably narrower compared to the incident pulse under conditions that involve a type of temporal focusing. This phenomenon is explained through space–time duality by showing that the temporal situation is analogous to an optical beam incident obliquely on a parabolic mirror. We obtain an approximate analytic expression for the reflected pulse’s spectrum and use it to derive the temporal version of the transformation law for the q parameter associated with a Gaussian beam. 
    more » « less
  3. We investigate the impact of the finite rise time of a spatiotemporal boundary inside a dispersive medium used for reflection and refraction of optical pulses. We develop a matrix approach in the frequency domain for analyzing such spatiotemporal boundaries and use it to show that the frequency range over which reflection can occur is reduced as the rise time increases. We also show that total internal reflection can occur even for boundaries with long rise times. This feature suggests that spatiotemporal waveguides can be realized through cross-phase modulation even when pump pulses have relatively long rise and fall times. 
    more » « less
  4. We develop an analytic approach for reflection of light at a temporal boundary inside a dispersive medium and derive frequency-dependent expressions for the reflection and transmission coefficients. Using the analytic results, we study the temporal reflection of an optical pulse and show that our results agree fully with a numerical approach used earlier. Our approach provides approximate analytic expressions for the electric fields of the reflected and transmitted pulses. Whereas the width of the transmitted pulse is modified, the reflected pulse is a mirrored version of the incident pulse. When a part of the incident spectrum lies in the region of total internal reflection, both the reflected and transmitted pulses are distorted considerably. 
    more » « less