skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Keto D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present observations of the extremely luminous but ambiguous nuclear transient (ANT) ASASSN-17jz, spanning roughly 1200 days of the object’s evolution. ASASSN-17jz was discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) in the galaxy SDSS J171955.84+414049.4 on UT 2017 July 27 at a redshift ofz= 0.1641. The transient peaked at an absoluteB-band magnitude ofMB,peak= −22.81, corresponding to a bolometric luminosity ofLbol,peak= 8.3 × 1044erg s−1, and exhibited late-time ultraviolet emission that was still ongoing in our latest observations. Integrating the full light curve gives a total emitted energy ofEtot= (1.36 ±0.08) × 1052erg, with (0.80 ± 0.02) × 1052erg of this emitted within 200 days of peak light. This late-time ultraviolet emission is accompanied by increasing X-ray emission that becomes softer as it brightens. ASASSN-17jz exhibited a large number of spectral emission lines most commonly seen in active galactic nuclei (AGNs) with little evidence of evolution. It also showed transient Balmer features, which became fainter and broader over time, and are still being detected >1000 days after peak brightness. We consider various physical scenarios for the origin of the transient, including supernovae (SNe), tidal disruption events, AGN outbursts, and ANTs. We find that the most likely explanation ismore »that ASASSN-17jz was a SN IIn occurring in or near the disk of an existing AGN, and that the late-time emission is caused by the AGN transitioning to a more active state.

    « less
  2. ABSTRACT The ejecta velocity is a very important parameter in studying the structure and properties of Type Ia supernovae (SNe Ia) and is a candidate key parameter in improving the utility of SNe Ia for cosmological distance determinations. Here, we study the velocity distribution of a sample of 311 SNe Ia from the kaepora data base. The velocities are derived from the Si ii λ6355 absorption line in optical spectra measured at (or extrapolated to) the time of peak brightness. We statistically show that the observed velocity has a bimodal Gaussian distribution (population ratio 201:110 or 65 per cent:35 per cent) consisting of two groups of SNe Ia: Group I with a lower but narrower scatter ($11\, 000 \pm 700\, \mathrm{km\, s}^{-1}$), and Group II with a higher but broader scatter ($12\, 300 \pm 1800\, \mathrm{km\, s}^{-1}$). The true origin of the two components is unknown. Naturally, there could exist two intrinsic velocity distributions observed. However, we try to use asymmetric geometric models through statistical simulations to reproduce the observed distribution assuming that all SNe Ia share the same intrinsic distribution. In the two cases we consider, 35 per cent of SNe Ia are considered to be asymmetric in Case 1, and all SNe Ia are asymmetric in Case 2. Simulations for both cases canmore »reproduce the observed velocity distribution but require a significantly large portion ($\gt 35{{\ \rm per\ cent}}$) of SNe Ia to be asymmetric. In addition, the Case 1 result is consistent with recent SNe Ia polarization observations that higher Si ii λ6355 velocities tend to be more polarized.« less
  3. Abstract We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star–black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg 2 for the 90th percentile best localization), covering a total of 51 deg 2 and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r -band decline rate of 0.68 mag day −1 , similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most −17.8 mag (50% confidence). Our data are not constraining for “red” kilonovae and rule out “blue” kilonovae with M >more »0.5 M ⊙ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <17° assuming an initial jet opening angle of ∼5.°2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.« less
  4. ABSTRACT

    We present BVRI and unfiltered (Clear) light curves of 70 stripped-envelope supernovae (SESNe), observed between 2003 and 2020, from the Lick Observatory Supernova Search follow-up program. Our SESN sample consists of 19 spectroscopically normal SNe Ib, 2 peculiar SNe Ib, six SNe Ibn, 14 normal SNe Ic, 1 peculiar SN Ic, 10 SNe Ic-BL, 15 SNe IIb, 1 ambiguous SN IIb/Ib/c, and 2 superluminous SNe. Our follow-up photometry has (on a per-SN basis) a mean coverage of 81 photometric points (median of 58 points) and a mean cadence of 3.6 d (median of 1.2 d). From our full sample, a subset of 38 SNe have pre-maximum coverage in at least one passband, allowing for the peak brightness of each SN in this subset to be quantitatively determined. We describe our data collection and processing techniques, with emphasis toward our automated photometry pipeline, from which we derive publicly available data products to enable and encourage further study by the community. Using these data products, we derive host-galaxy extinction values through the empirical colour evolution relationship and, for the first time, produce accurate rise-time measurements for a large sample of SESNe in both optical and infrared passbands. By modelling multiband light curves, we find that SNe Ic tend to have lower ejectamore »masses and lower ejecta velocities than SNe Ib and IIb, but higher 56Ni masses.

    « less