skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Mengyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Industrial Internet of Things (IIoT) has been shown to be of great value to the deployment of smart industrial environment. With the immense growth of IoT devices, dynamic spectrum sharing is introduced, envisaged as a promising solution to the spectrum shortage in IIoT. Meanwhile, cyber-physical safety issue remains to be a great concern for the reliable operation of IIoT system. In this paper, we consider the dynamic spectrum access in IIoT under a Received Signal Strength (RSS) based adversarial localization attack. We employ a practical and effective power perturbation approach to mitigate the localization threat on the IoT devices and cast the privacy-preserving spectrum sharing problem as a stochastic channel selection game. To address the randomness induced by the power perturbation approach, we develop a two-timescale distributed learning algorithm that converges almost surely to the set of correlated equilibria of the game. The numerical results show the convergence of the algorithm and corroborate that the design of two-timescale learning process effectively alleviates the network throughput degradation brought by the power perturbation procedure.