skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Qiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cancer cell migration through narrow constrictions generates compressive stresses on the nucleus that deform it and cause rupture of nuclear membranes. Nuclear membrane rupture allows uncontrolled exchange between nuclear and cytoplasmic contents. Local tensile stresses can also cause nuclear deformations, but whether such deformations are accompanied by nuclear membrane rupture is unknown. Here we used a direct force probe to locally deform the nucleus by applying a transient tensile stress to the nuclear membrane. We found that a transient (∼0.2 s) deformation (∼1% projected area strain) in normal mammary epithelial cells (MCF-10A cells) was sufficient to cause rupture of the nuclear membrane. Nuclear membrane rupture scaled with the magnitude of nuclear deformation and the magnitude of applied tensile stress. Comparison of diffusive fluxes of nuclear probes between wild-type and lamin-depleted MCF-10A cells revealed that lamin A/C, but not lamin B2, protects the nuclear membranes against rupture from tensile stress. Our results suggest that transient nuclear deformations typically caused by local tensile stresses are sufficient to cause nuclear membrane rupture.
  2. null (Ed.)
  3. Abstract

    Conventional templating synthesis confines the growth of seeds in rigid spaces to achieve faithful morphological replication. Herein, we explore the use of spherical shape‐deformable polymeric nanoshells to regulate the anisotropic growth of Ag nanoplates. The flexible shells deform adaptively to accommodate the initial overgrowth of the seeds but restrict the growth in the directions where the shells are fully stretched, eventually producing nanoplates with an unconventional circular profile. The diameter of the final Ag nanoplates can be precisely predicted by stretching and flattering the nanoshells into a plate‐like capsule while retaining their original internal surface area. Furthermore, unlike conventional templates, the polymer shells eventually turn themselves into a conformal coating that binds to the surface of the full‐grown Ag nanoplates and significantly enhances their stability against oxidative etching.