Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding how severe hailstorms will respond to climate change remains challenging partially due to an incomplete understanding of how different environments produce hail. Leveraging a record of 14,297 global potential severe hailstorms detected by spaceborne precipitation radar, here for the first time, we explore global differences in the five distinct environmental types producing these storms. Two are found over tropical plains and hills with high convective instability, high‐moderate moisture, and low vertical wind shear (VWS). The third type are supercell environments characterized by strong VWS, with moderate instability and moisture, commonly occurring over mid‐latitude plains. Higher latitude plains and elevated terrain reflect the final two, with moderate VWS and low melting height, instability, and moisture. The variety of hailstorm environment types illustrates distinctions in the associated convective mode and embryo type, highlighting that multiple environment types pose challenges for modeling present frequency and anticipating the response of hail to climate change.more » « less
-
Abstract Increasing performance demand associated with the short lifetime of consumer electronics has triggered fast growth in electronic waste, leading to serious ecological challenges worldwide. Herein, a robust strategy for judiciously constructing flexible perovskite solar cells (PSCs) that can be conveniently biodegraded is reported. The key to this strategy is to capitalize on meniscus‐assisted solution printing (MASP) as a facile means of yielding cross‐aligned silver nanowires in one‐step, which are subsequently impregnated in a biodegradable elastomeric polyester. Intriguingly, the as‐crafted hybrid biodegradable electrode greatly constrains the solvent evaporation of the perovskite precursor solution, thereby generating fewer nuclei and in turn resulting in the deposition of a large‐grained dense perovskite film that exhibits excellent optoelectronic properties with a power conversion efficiency of 17.51% in PSCs. More importantly, the hybrid biodegradable electrode‐based devices also manifest impressive robustness against mechanical deformation and can be thoroughly biodegraded after use. These results signify the great potential of MASP for controllably assembling aligned conductive nanomaterials for biodegradable electrodes. As such, it represents an important endeavor toward environmentally friendly, multifunctional and flexible electronic, optoelectronic, photonic, and sensory materials and devices.more » « less
An official website of the United States government
