Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2023
-
Abstract DNA damage and epigenetic marks are well established to have profound influences on genome stability and cell phenotype, yet there are few technologies to obtain high-resolution genomic maps of the many types of chemical modifications of DNA. Here we present Nick-seq for quantitative, sensitive, and accurate mapping of DNA modifications at single-nucleotide resolution across genomes. Pre-existing breaks are first blocked and DNA modifications are then converted enzymatically or chemically to strand-breaks for both 3′-extension by nick-translation to produce nuclease-resistant oligonucleotides and 3′-terminal transferase tailing. Following library preparation and next generation sequencing, the complementary datasets are mined with a custom workflow to increase sensitivity, specificity and accuracy of the map. The utility of Nick-seq is demonstrated with genomic maps of site-specific endonuclease strand-breaks in purified DNA from Eschericia coli, phosphorothioate epigenetics in Salmonella enterica Cerro 87, and oxidation-induced abasic sites in DNA from E. coli treated with a sublethal dose of hydrogen peroxide. Nick-seq applicability is demonstrated with strategies for >25 types of DNA modification and damage.more » « less
-
Dielectric capacitors with ultrahigh power densities are fundamental energy storage components in electrical and electronic systems. However, a long-standing challenge is improving their energy densities. We report dielectrics with ultrahigh energy densities designed with polymorphic nanodomains. Guided by phase-field simulations, we conceived and synthesized lead-free BiFeO 3 -BaTiO 3 -SrTiO 3 solid-solution films to realize the coexistence of rhombohedral and tetragonal nanodomains embedded in a cubic matrix. We obtained minimized hysteresis while maintaining high polarization and achieved a high energy density of 112 joules per cubic centimeter with a high energy efficiency of ~80%. This approach should be generalizable for designing high-performance dielectrics and other functional materials that benefit from nanoscale domain structure manipulation.more » « less