skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Teng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. We introduce a novel sufficient dimension-reduction (SDR) method which is robust against outliers using α-distance covariance (dCov)in dimension-reduction problems. Under very mild conditions on the predictors, the central subspace is effectively estimated and model-free without estimating link function based on the projection on the Stiefel manifold. We establish the convergence property of the pro-posed estimation under some regularity conditions. We compare the performance of our method with existing SDR methods by simulation and real data analysis and show that our algorithm improves the computational efficiency and effectiveness. 
    more » « less
    Free, publicly-accessible full text available February 19, 2025
  3. While the prominent influence of El Niño‐Southern Oscillation (ENSO) on the Indian Ocean Oscillation (IOD) is widely recognized, intricate relationships between them are often invoked that introduce challenges into seasonal predictions. Previous studies have shown that different flavors of El Niño exhibit distinct associations with the IOD. In this study, we demonstrate that La Niña's teleconnection to the IOD is primarily controlled by its longitudinal position. Westward‐displaced La Niña events tend to produce stronger negative convection anomalies in the central Pacific and more pronounced Walk Circulation anomalies, thereby triggering strong negative IOD events. In contrast, eastward‐displaced La Niña events are usually accompanied by feeble convection response due to the excessively cold conditions in the cold tongue, yielding insignificant IOD response. The pivotal role of La Niña's longitudinal position on the IOD's response is realistically reproduced by targeted pacemaker experiments, providing new insights into inter‐basin climate connections. 
    more » « less
    Free, publicly-accessible full text available February 16, 2025
  4. While matrix-covariate regression models have been studied in many existing works, classical statistical and computational methods for the analysis of the regression coefficient estimation are highly affected by high dimensional matrix-valued covariates. To address these issues, this paper proposes a framework of matrix-covariate regression models based on a low-rank constraint and an additional regularization term for structured signals, with considerations of models of both continuous and binary responses. We propose an efficient Riemannian-steepest-descent algorithm for regression coefficient estimation. We prove that the consistency of the proposed estimator is in the order of O(sqrt{r(q+m)+p}/sqrt{n}), where r is the rank, p x m is the dimension of the coefficient matrix and p is the dimension of the coefficient vector. When the rank r is small, this rate improves over O(sqrt{qm+p}/sqrt{n}), the consistency of the existing work (Li et al. in Electron J Stat 15:1909-1950, 2021) that does not apply a rank constraint. In addition, we prove that all accumulation points of the iterates have similar estimation errors asymptotically and substantially attaining the minimax rate. We validate the proposed method through a simulated dataset on two-dimensional shape images and two real datasets of brain signals and microscopic leucorrhea images. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  5. Free, publicly-accessible full text available February 27, 2025
  6. Abstract

    Surface wrinkles have emerged as a promising avenue for the development of smart adhesives with dynamically tunable adhesion, finding applications in diverse fields, such as soft robots and medical devices. Despite intensive studies and great achievements, it is still challenging to model and simulate the tunable adhesion with surface wrinkles due to roughened surface topologies and pre-stress inside the materials. The lack of a mechanistic understanding hinders the rational design of these smart adhesives. Here, we integrate a lattice model for nonlinear deformations of solids and nonlocal interaction potentials for adhesion in the framework of molecular dynamics to explore the roles of surface wrinkles on adhesion behaviors. We validate the proposed model by comparing wrinkles in a neo-Hookean bilayer with benchmarked results and reproducing the analytical solution for cylindrical adhesion. We then systematically study the pull-off force of the wrinkled surface with varied compressive strains and adhesion energies. Our results reveal the competing effect between the adhesion-induced contact and the roughness due to wrinkles on enhancing or weakening the adhesion. Such understanding provides guidance for tailoring material and geometry as well as loading wrinkled surfaces for different applications.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  7. Free, publicly-accessible full text available February 1, 2025