This paper presents a haptic interface with modular linear actuators that addresses the limitations of conventional devices based on rotary joints. The proposed haptic interface is composed of parallel linear actuators that provide high backdrivability and small inertia. The performance of the haptic interface is compared to those of conventional mechanisms in terms of force capability, reflected inertia, and structural stiffness. High stiffness, large range of motion, and high force capability, which are in trade-off relationships in traditional haptic interfaces, are achieved. The device can apply up to 83 N continuously, i.e., three-fold more than most haptic devices. The theoretical minimum haptic force density and stiffness of the proposed mechanism are 1.3 to 1.9 and 37 times those of the conventional mechanisms under similar conditions, respectively. The system is scalable because the structural stiffness depends on only the timing belt stiffness, whereas that of conventional haptic interfaces is inversely proportional to the cube of the structural length. The modular actuator enables changes in the degrees of freedom (DOFs) for different applications. The proposed haptic interface was tested through an interaction experiment in a virtual environment with virtual walls. 
                        more » 
                        « less   
                    
                            
                            A compliant metastructure design with reconfigurability up to six degrees of freedom
                        
                    
    
            Abstract Compliant mechanisms with reconfigurable degrees of freedom are gaining attention in the development of kinesthetic haptic devices, robotic systems, and mechanical metamaterials. However, available devices exhibit limited programmability and form-customizability, restricting their versatility. To address this gap, we propose a metastructure concept featuring reconfigurable motional freedom and tunable stiffness, adaptable to various form factors and applications. These devices incorporate passive flexures and actively stiffness-changing rods to modify kinematic freedom. A rational design pipeline informs the flexures’ topological arrangements, geometric parameters, and control signals based on targeted mobilities, enabling the creation of unitary joints with up to six degrees of freedom. Our demonstrative application examples include a wrist device that has an effective stiffness of 0.370 Nm/deg (unlocked state, 5% displacement) to 2.278 Nm/deg (locked state, 1% displacement) to enable dynamic joint mobility control, a haptic thimble device (2.27-52.815 Nmm−1at 1% displacement) that mimics the sensation of touching physical materials ranging from soft gel to metal surfaces, and a wearable device composed of multiple joints tailored for the arm and hand to augment haptic experiences or facilitate muscle training. We believe the presented method can help democratize compliant metastructures development and expand their versatility for broader contexts. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2427455
- PAR ID:
- 10566573
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The impressive locomotion and manipulation capabilities of spiders have led to a host of bioinspired robotic designs aiming to reproduce their functionalities; however, current actuation mechanisms are deficient in either speed, force output, displacement, or efficiency. Here—using inspiration from the hydraulic mechanism used in spider legs—soft‐actuated joints are developed that use electrostatic forces to locally pressurize a hydraulic fluid, and cause flexion of a segmented structure. The result is a lightweight, low‐profile articulating mechanism capable of fast operation, high forces, and large displacement; these devices are termed spider‐inspired electrohydraulic soft‐actuated (SES) joints. SES joints with rotation angles up to 70°, blocked torques up to 70 mN m, and specific torques up to 21 N m kg−1are demonstrated. SES joints demonstrate high speed operation, with measured roll‐off frequencies up to 24 Hz and specific power as high as 230 W kg−1—similar to human muscle. The versatility of these devices is illustrated by combining SES joints to create a bidirectional joint, an artificial limb with independently addressable joints, and a compliant gripper. The lightweight, low‐profile design, and high performance of these devices, makes them well‐suited toward the development of articulating robotic systems that can rapidly maneuver.more » « less
- 
            Flexures provide precise motion control without friction or wear. Variable impedance mechanisms enable adapt- able and robust interactions with the environment. This paper combines the advantages of both approaches through layer jamming. Thin sheets of complaint material are encased in an airtight envelope, and when connected to a vacuum, the bending stiffness and damping increase dramatically. Using layer jamming structures as flexure elements leads to mechan- ical systems that can actively vary stiffness and damping. This results in flexure mechanisms with the versatility to transition between degrees of freedom and degrees of constraint and to tune impact response. This approach is used to create a 2-DOF, jamming-based, tunable impedance robotic wrist that enables passive hybrid force/position control for contact tasks.more » « less
- 
            Haptics devices have been developed in a wide range of form factors, actuation methods, and degrees of freedom, often with the goal of communicating information. While work has investigated the maximum rate and quantity of information that can be transferred through haptics, these measures often do not inform how humans will use the devices. In this work, we measure the differences between perception and use as it relates to signal complexity. Using an inflatable soft haptic display with four independently actuated pouches, we provide navigation directions to participants. The haptic device operates in three modalities, in increasing order of signal complexity: Cardinal, Ordinal, and Continuous. We first measure participants’ accuracy in perceiving continuous signals generated by the device, showing average errors below 5 deg. Participants then used the haptic device in each operating mode to guide an object towards a target in a 2-dimensional plane. Our results indicate that human’s use of haptic signals often lags significantly behind the displayed signal and is less accurate than their static perception. Additionally signal complexity was correlated with path efficiency but inversely correlated with movement speed, showing that even simple design changes create complex tradeoffs.more » « less
- 
            This work investigates the stability and rendering limitations of admittance-type haptic devices. We investigated a wider range of impedances than had previously been considered, including stiffness, damping, mass, and combinations thereof. The coupled human driving impedance, actuator position control bandwidth, and loop delay are identified as major factors affecting the range of stable impedances. Finally, the theoretical results are experimentally verified using a custom one degree of freedom admittance type haptic device.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
